Development of an autonomous power supply using the Ranque-Hilsch vortex effect

Authors

  • Denis Bazykin Voronezh State Technical University
  • Vitaliy Ilyichev Voronezh State Technical University

Keywords:

power supply, organic Rankine cycle, vortex tube, vortex effect, gas, thermoelectric generator module, electrical energy, flow

Abstract

The relevance of the research is to develop an autonomous power source based on a closed organic Rankine cycle with the simultaneous use of the Ranque-Hilsch vortex effect, which can be used for the efficient generation of electrical energy at mining, transportation, preparation and processing facilities various gases, including at industrial sites located in hard-to-reach areas, significantly removed from the centralized power supply, as well as in areas with harsh climatic conditions. The article discusses the main positive characteristics and disadvantages of existing autonomous power plants used in this industry, as well as the design and operating principle of the developed autonomous power supply, the use of which will significantly reduce environmental pollution due to the lack of use of combustion products in the technological cycle, thereby increasing the environmental friendliness of the process of generating electrical energy, minimizing the economic costs of fuel and maintenance, as well as increasing the fire and explosion safety of the mentioned objects, a design option for an autonomous power supply, including a thermoelectric generator module, has also been considered

Metrics

Metrics Loading ...

References

ГОСТ

1. Zornek T., Monz T., Aigner M. Performance analysis of the micro gas turbine Turbec T100 with a new FLOX-combustion system for low calorific fuels // Applied Energy. 2015. – Vol. 159. – P. 276-284. DOI: 10.1016/j.apenergy.2015.08.075.

2. Bazykin D.A., Barakov A.V. Development of an autonomous power supply for oil and gas fields based on a gas turbine unit driven by an active-reactive turbine // IOP Conf. Ser.: Mater. Sci. Eng. –2021. – Vol. 1035. – P. 12003. EDN: EYPLFD, DOI: 10.1088/1757-899X/1035/1/012003.

3. Alford A., Nichol P., Frisby B. The Development of a Small High Speed Steam Microturbine Generator System // IOP Conf. Ser.: Mater. Sci. Eng. – 2015. – Vol. 90. – P. 012067.

DOI: 10.1088/1757-899X/90/1/012067

4. Чижма С.Н., Захаров А.И. Исследование имитационной модели автономной энергоустановки на возобновляемых источниках энергии // Промышленная энергетика. – 2020. – № 11. – С. 54-60. EDN: NBQSYB, DOI: https://doi.org/10.34831/EP.2020.94.76.007.

5. Автономная ветро-солнечная электростанция / П.Н. Кузнецов, Б.А. Якимович, М.Ю. Сперанский и др. // Advances in Science and Technology: Сб. ст. XXV межд. научно-практ. конф., Москва, 15 декабря 2019 года. – М.: Актуальность.РФ, 2019. – С. 117-119.

EDN: PIQSRP

6. Оценка энергетической эффективности применения детандер-генераторных агрегатов в системах с комбинированным производством тепла и электрической энергии / В.Я. Губарев, А.Г. Арзамасцев, А.И. Шарапов, А.Ю. Картель // Проблемы региональной энергетики. – 2018. – № 3(38). – С. 93-101. EDN: CJSGLP

7. Конструкции мини-ГЭС / Д.В. Кадигроб, Д.В. Куплевацкий, М.В. Горт [и др.] // Энергетика: состояние, проблемы, перспективы: Тр. XI Всерос. научно-техн. конф.. – Оренбург: ОГУ, 2020. С. 32-39. EDN: DBYWYT

8. Иброгимов Р.И. Термоэлектрические установки для электроснабжения потребителей малой мощности // Инновационные тенденции развития российской науки: мат-лы X Межд. научно-практ. конф. мол. ученых, посв. Году экологии и 65-летию Красноярского ГАУ. – Красноярск: КГАУ, 2017. – С. 114-119. EDN: YPGZEP

9. Карабарин Д.И., Михайленко С.А. Повышение энергоэффективности производства энергии в районах децентрализованной энергетики // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2017. – Т. 328, № 10. – С. 81-86.

EDN: ZWHCYT

10. Белов Г.В., Дорохова М.А. Органический цикл Ренкина и его применение в альтернативной энергетике // Наука и образование: научное издание МГТУ им. Н.Э. Баумана. – 2014. – № 2. – С. 99-124. EDN: SGSLVP

11. Янчошек Л., Кунц П. Органический цикл Ренкина: использование в когенерации // Турбины и дизели. – 2012. № 2. – С. 50-53. URL: http://www.turbine-diesel.ru/node/4078

12. On the role of working fluid properties in Organic Rankine Cycle performance / M.Z. Stijepovic, P. Linke, A.I. Papadopoulos, A.S. Grujic // Applied Thermal Engineering. – 2012. – Vol. 36. – P. 406-413. DOI: 10.1016/j.applthermaleng.2011.10.057

13. Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat / Z.Q. Wang, N.J. Zhou, J. Guo, X.Y. Wang // Energy. – 2012. – Vol. 40, Is. 1. – P. 107-115. DOI: 10.1016/j.energy.2012.02.022.

14. Roy J.P., Mishra M.K., Misra A. Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions // Applied Energy. – 2011. – Vol. 88, Is. 9. – P. 2995-3004. DOI: 10.1016/j.apenergy.2011.02.042

15. Белоусов А.М., Исрафилов И.Х., Харчук С.И. Исследование возможностей повышения энергоэффективности вихревой трубы Ранка – Хилша // Известия Тульского государственного университета. Технические науки. – 2015. – № 7-2. – С. 112-121. EDN: VCQCHB

16. Экспериментальное исследование термодинамической эффективности регулируемой вихревой трубы на природном газе / В. Бетлинский, М. Жидков, В. Овчинников, Д. Жидков // Нефтегазовые технологии. – 2008. – № 2. – С. 2-6. EDN: IJOMFL

17. Шостаковский П. Альтернативные источники электрической энергии промышленного применения на основе термоэлектрических генераторов // Компоненты и технологии. – 2013. – № 5(142). – С. 133-138. EDN: PZFXJR

APA

1. Zornek, T., Monz, T., & Aigner, M. (2015). Performance analysis of the micro gas turbine Turbec T100 with a new FLOX-combustion system for low calorific fuels. Applied Energy, 159, 276-284. https://doi.org/10.1016/j.apenergy.2015.08.075

2. Bazykin, D. A., & Barakov, A. V. (2021). Development of an autonomous power supply for oil and gas fields based on a gas turbine unit driven by an active-reactive turbine. IOP Conf. Ser.: Mater. Sci. Eng., 1035, 12003. https://doi.org/10.1088/1757-899X/1035/1/012003

3. Alford, A., Nichol, P., & Frisby, B. (2015). The Development of a Small High Speed Steam Microturbine Generator System. IOP Conf. Ser.: Mater. Sci. Eng., 90, 012067. http://dx.doi.org/10.1088/1757-899X/90/1/012067

4. Chizhma, S. N., & Zaharov, A. I. (2020). Issledovanie imitacionnoj modeli avtonomnoj energoustanovki na vozobnovlyaemyh istochnikah energii [Study of a simulation model of an autonomous power plant using renewable energy sources]. Promyshlennaya energetika, 11, 54-60.

https://doi.org/10.34831/EP.2020.94.76.007 [In Russian]

5. Kuznecov, P. N., Yakimovich, B. A., Speranskij, M. Yu, Smoktal, N. N., & Lavrenchuk, A. A. (2019). Autonomous wind-solar power station. In Proc. of Advances in Science and Technology (pp. 117-119). Aktual'nost'.RF. [In Russian]

6. Gubarev, V. Ya., Arzamascev, A. G., Sharapov, A.,I., & Kartel, A. Yu. (2018). Ocenka energeticheskoj effektivnosti primeneniya detander-generatornyh agregatov v sistemah s kombinirovannym proizvodstvom tepla i elektricheskoj energii [Assessment of the energy efficiency of using expander-generator units in systems with combined heat and electricity production]. Problemy regional'noj energetiki, 3(38) , 93-101. [In Russian]

7. Kadigrob, D. V., Kuplevackij, D. V., Gort, M. V., Fomichev, I. A., & Shaburov, P. O. (2020). Konstrukcii mini-GES [Mini-hydroelectric power station structures]. In Proc of Energetika: sostoyanie, problemy, perspektivy, Orenburg (pp. 32-39). Orenburg State University. [In Russian]

8. Ibrogimov, R. I. (2017). Termoelektricheskie ustanovki dlya elektrosnabzheniya potrebitelej maloj moshchnosti [Thermoelectric installations for power supply to low-power consumers]. In Proc. Innovacionnye tendencii razvitiya rossijskoj nauki (pp. 114-119). Krasnoyarsk State Agrarian University. [In Russian]

9. Karabarin, D. I., & Mihajlenko, S. A. (2017). Povyshenie energoeffektivnosti proizvodstva energii v rajonah decentralizovannoj energetiki [Increasing the energy efficiency of energy production in areas of decentralized energy]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 328(10) , 81-86. [In Russian]

10. Belov, G. V., & Dorokhova, M. A. Organicheskij cikl Renkina i ego primenenie v al'ternativnoj energetike [Organic Rankine cycle and its application in alternative energy]. (2014). Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2, 99-124. [In Russian]

11. Yanchoshek, L., & Kunc, P. (2012). Organicheskij cikl Renkina: ispol'zovanie v kogeneracii [Organic Rankine cycle: use in cogeneration]. Turbiny i dizeli, 2, 50-53. http://www.turbine-diesel.ru/node/4078 [In Russian]

12. Stijepovic, M. Z., Linke, P., Papadopoulos, A. I., & Grujic, A. S. (2012). On the role of working fluid properties in Organic Rankine Cycle performance. Applied Thermal Engineering, 36, 406-413. http://dx.doi.org/10.1016/j.applthermaleng.2011.10.057

13. Wang, Z. Q., Zhou, N. J., Guo, J., & Wang, X. Y. (2012). Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy, 40(1) , 107-115. https://doi.org/10.1016/j.energy.2012.02.022.

14. Roy, J. P., Mishra, M. K. & Misra, A. (2011). Performance analysis of an Organic Rankine Cycle with superheat-ing under different heat source temperature conditions. Applied Energy, 88, 2995-3004. http://dx.doi.org/10.1016/j.apenergy.2011.02.042

15. Belousov, A. M., Israfilov, I. H., & Harchuk, S. I. (2015). Issledovanie vozmozhnostej povysheniya energoeffektivnosti vihrevoj truby Ranka – Hilsha [Research on the possibilities of increasing the energy efficiency of the Ranque–Hilsch vortex tube]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 7-2, 112-121. [In Russian]

16. Betlinskij, V., Zhidkov, M., Ovchinnikov, V., & Zhidkov, D. (2008). Eksperimental'noe issledovanie termodinamicheskoj effektivnosti reguliruemoj vihrevoj truby na prirodnom gaze [Experimental study of the thermodynamic efficiency of a controlled vortex tube using natural gas]. Neftegazovye tekhnologii, 2, 2-6. [In Russian]

17. Shostakovskij, P. (2013). Al'ternativnye istochniki elektricheskoj energii promyshlennogo primeneniya na osnove termoelektricheskih generatorov [Alternative sources of electrical energy for industrial use based on thermoelectric generators]. Komponenty i tekhnologii, 5(142) , 133-138. [In Russian]

Published

2023-12-04

How to Cite

Bazykin Д., & Ilyichev В. (2023). Development of an autonomous power supply using the Ranque-Hilsch vortex effect. Energy Systems, 8(2), 35–43. Retrieved from https://j-es.ru/index.php/journal/article/view/2023-2-004

URN