Повышение тепловых характеристик радиатора с вертикальным оребрением при использовании аэрозольно-испарительного охлаждения

Авторы

  • Абед А.Х. Технологический университет Ирака, Багдад
  • Хусейни Х.А. Технологический университет Ирака, Багдад
  • Пахалуев В.М. Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург

Ключевые слова:

охлаждение, водовоздушный аэрозоль, туман, коэффициент теплоотдачи, радиатор

Аннотация

В данной работе проведено экспериментальное исследование конвекционного теплоотвода от вертикально расположенного радиатора с параллельными прямоугольными ребрами. Эксперименты проводились с целью изучения и оценки интенсификации теплоотдачи при различных мощностях нагрева за счет введения в воздух водовоздушного аэрозоля. Для данного исследования была разработана и сконструирована специальная экспериментальная установка, позволяющая проводить эксперименты по охлаждению как воздухом, так и водовоздушным аэрозолем. Влияние концентрации аэрозоля на интенсивность теплоотдачи было исследовано в диапазоне расхода воды mw = 90 – 430 мл/ч, в то время как температура поверхности изменялась от 29 до 110°C. Результаты экспериментов показали, что интенсификация теплоотдачи происходит по мере увеличения расхода воды и достигает максимума при mw = 430 мл/ч. Теплоотдача интенсифицируется в среднем в 1,28, 1,81, 2,37, 2,83 раз по сравнению с традиционным воздушным охлаждением в диапазоне mw = 90 – 430 мл/ч. Кроме того, было исследовано влияние водовоздушного охлаждения при различных: шаге между ребрами, количестве ребер и площади охлаждаемой поверхности.

Метрики

Загрузка метрик ...

Библиографические ссылки

[APA]

1. Rong, H.Y., & Ming, C. (1995). Optimum Longitudinal Convective Fins Arrays. Int. Communications in Heat and Mass Transfer, 22(3), 445-460. Available: https://doi.org/10.1016/0735-1933(95)00029-X

2. Taheri, A., Moghadam, M.G., Mohammadi, M., Mohammad, P.-F., & Mohammad S. (2020). A new design of liquid-cooled heat sink by altering the heat sink heat pipe application: Experimental approach and prediction via artificial neural network. Energy Conversion and Management, 206, 112485. Available: https://doi.org/10.1016/j.enconman.2020.112485

3. Mira-Hernández, C., Clark, M.D., Weibel, J.A., & Garime S.V. (2018). Development and validation of a semi-empirical model for two-phase heat transfer from arrays of impinging jets. International Journal of Heat and Mass Transfer, 124, 782-793. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.047

4. Yu, Y., Simon, T.W., Zhang, M., Yeom, T., North, M.T., & Cui T. (2014). Enhancing heat transfer in air-cooled heat sinks using piezoelectrically-driven agitators and synthetic jets. International Journal of Heat and Mass Transfer, 184, 184-193. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.001

5. Altun, A.H., & Ziylan O. (2019). Experimental investigation of the effects of horizontally oriented vertical sinusoidal wavy fins on heat transfer performance in case of natural convection. International Journal of Heat and Mass Transfer, 139, 425-431. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.009

6. Zhang, K., Li, M.-J., Wang, F.-L., & He, Y.-L. (2020). Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays. International Journal of Heat and Mass Transfer, 152, 19315. Available: http://doi.org/10.1016/j.icheatmasstransfer.2021.105556

7. Taji, S.G., Parishwad, G.V., & Sane N.K. (2014). Enhanced performance of horizontal rectangular fin array heat sink using assisting mode of mixed convection. International Journal of Heat and Mass Transfer, 72, 250-259. Available: http://doi.org/10.1016/j.ijheatmasstransfer.2014.01.012

8. Güvenç, A., & Yüncü, H. (2001). An experimental investigation on performance of fins on a horizontal base in free convection heat transfer. International Journal of Heat and Mass Transfer, 37(4-5), 409-416. Available: https://doi.org/10.1007/s002310000139

9. Abed, A.H., Shcheklein, S.E., & Pakhaluev, V.M. (2019). Investigation of heat transfer coefficient of spherical element using infrared thermography (IR) and gas-water droplets (mist) as working medium. IOP Conf. Ser.: Mater. Sc. Eng., 481(1), 012033. Available: https://doi.org/10.1088/1757-899x/481/1/012033

10. Khangembam, C., Singh, D., Handique, J., & Singh K. (2020). Experimental and numerical study of air-water mist jet impingement cooling on a cylinder. International Journal of Heat and Mass Transfer, 150, 119368. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119368

11. Yu, F.W., & Chan, K.T. (2011). Improved energy performance of air-cooled chiller system with mist pre-cooling. Applied Thermal Engineering, 31(4), 537-544. Available: https://doi.org/10.1016/j.applthermaleng.2010.10.012

12. Lee, S.L., Yang, Z.H., & Hsyua, Y. Cooling of a Heated Surface by Mist Flow. Journal of Heat Transfer, 116(1), 167-172. Available: https://doi.org/10.1115/1.2910851

13. Abed, A.H., Shcheklein, S.E., & Pakhaluev, V.M. Experimental investigation of hydrodynamics and heat transfer of sphere cooling using air/water mist two phase flow. IOP Conf. Ser.: Mater. Sc. Eng., 552(1), 012001. Available: https://doi.org/10.1088/1757-899x/552/1/012001

14. Kumari, N., Bahadur, V., Hodes, M., Salamon, T., Kolodner, P., Lyons, A., & Garimella S.V. (2010). Analysis of evaporating mist flow for enhanced convective heat transfer. International Journal of Heat and Mass Transfer, 53(15-16), 3346-3356. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.027

15. Bahadur, V., Hodes, M., Lyons A., Krishnan, S., & Garimella, S.V. (2008). Enhanced cooling in a sealed cabinet using an evaporating-condensing dielectric mist. Proc of the 11th Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems. (pp. 1191-1198). Orlando, FL, USA: IEEE. Available: https://doi.org/10.1109/itherm.2008.4544396

16. Yalcin, H.G., Baskaya, S., & Sivrioglu, M. (2008). Numerical analysis of natural convection heat transfer from rectangular shrouded fin arrays on a horizontal surface. International Communications in Heat and Mass Transfer, 35(3), 299-311. Available: https://doi.org/10.1016/j.icheatmasstransfer.2007.07.009

17. Barrow, H., & Pope, C.W. (2007). Droplet evaporation with reference to the effectiveness of water-mist cooling. Applied energy, 84(4), 404-412. Available: https://doi.org/10.1016/j.apenergy.2006.09.007

18. Kudo, T., Sekiguchi, K., Sankoda K., Namiki, N., & Nii S. (2016). Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization. Ultrasonics sonochemistry, 37, 16-22. Available: https://doi.org/10.1016/j.ultsonch.2016.12.019

19. Cengel, Y. Heat and Mass Transfer. A practical approach. Columbus (GA, USA): Mc-Graw Hill Education, 2003. 874 с.

20. Moffat, R.J. (1988). Describing the Uncertainties in Experimental Results. Experimental Thermal and Fluid Science, 1 , 3-17. Available: https://doi.org/10.1016/0894-1777(88)90043-x

21. Harahap, F., & McManus, H.N. (1967). Natural convection heat transfer from horizontal rectangular fin arrays. Journal of Heat Transfer, 89(1), 32–38. Available: https://doi.org/10.1115/1.3614318

22. Baskaya, S., Sivrioglu, M., & Ozek, M. (2000). Parametric study of natural convection heat transfer from horizontal rectangular fin arrays. International Journal of Thermal Sciences, 39(8), 797-805. Available: https://doi.org/10.1016/s1290-0729(00)00271-4

[ГОСТ Р 7.0.5–2008]

1. Rong H. Y., Ming C. Optimum Longitudinal Convective Fins Arrays // Int. Communications in Heat and Mass Transfer. 1995. Vol. 22(3). P. 445-460.
DOI: https://doi.org/10.1016/0735-1933(95)00029-X

2. A new design of liquid-cooled heat sink by altering the heat sink heat pipe application: Experimental approach and prediction via artificial neural network / A. Taheri, M.G. Moghadam, M. Mohammadi et al. // Energy Conversion and Management. 2020. Vol. 206. P. 112485.
DOI: https://doi.org/10.1016/j.enconman.2020.112485

3. Development and validation of a semi-empirical model for two-phase heat transfer from arrays of impinging jets / C. Mira-Hernández, M.D. Clark, J.A. Weibel, S.V. Garime // International Journal of Heat and Mass Transfer. 2018. Vol. 124. P. 782-793.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.047

4. Enhancing heat transfer in air-cooled heat sinks using piezoelectrically-driven agitators and synthetic jets / Y.Yu, T.W. Simon, M. Zhang et al. // International Journal of Heat and Mass Transfer. 2014. Vol. 184. P. 184-193.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.001

5. Altun A.H., Ziylan O. Experimental investigation of the effects of horizontally oriented vertical sinusoidal wavy fins on heat transfer performance in case of natural convection // International Journal of Heat and Mass Transfer. 2019. Vol. 139. P. 425-431.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.009

6. Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays / K. Zhang, M.-J. Li, F.-L. Wang, Y.-L. He // International Journal of Heat and Mass Transfer. 2020. Vol. 152. P. 119315.
DOI: http://doi.org/10.1016/j.icheatmasstransfer.2021.105556

7. Taji, S.G., Parishwad G.V., Sane N.K. Enhanced performance of horizontal rectangular fin array heat sink using assisting mode of mixed convection // International Journal of Heat and Mass Transfer. 2014. Vol. 72. P. 250-259.
DOI: http://doi.org/10.1016/j.ijheatmasstransfer.2014.01.012

8. Güvenç A., Yüncü H. An experimental investigation on performance of fins on a horizontal base in free convection heat transfer // International Journal of Heat and Mass Transfer. 2001. Vol. 37(4-5). P. 409-416.
DOI: https://doi.org/10.1007/s002310000139

9. Abed A.H., Shcheklein S.E., Pakhaluev V.M. Investigation of heat transfer coefficient of spherical element using infrared thermography (IR) and gas-water droplets (mist) as working medium // IOP Conf. Ser.: Mat. Sc. Eng. 2019. Vol. 481(1). P. 012033.
DOI: https://doi.org/10.1088/1757-899x/481/1/012033 [eLIBRARY: 38723553]

10. Experimental and numerical study of air-water mist jet impingement cooling on a cylinder / C. Khangembam, D. Singh, J. Handique, K. Singh // International Journal of Heat and Mass Transfer. 2020. Vol. 150. P. 119368.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119368

11. Yu F.W., Chan K.T. Improved energy performance of air-cooled chiller system with mist pre-cooling // Applied Thermal Engineering. 2011. Vol. 31(4). P. 537-544.
DOI: https://doi.org/10.1016/j.applthermaleng.2010.10.012

12. Lee S.L,, Yang Z.H., Hsyua Y. Cooling of a Heated Surface by Mist Flow // Journal of Heat Transfer. 1994. Vol. 116(1). P. 167-172.
DOI: https://doi.org/10.1115/1.2910851

13. Abed A.H., Shcheklein S.E., Pakhaluev V.M. Experimental investigation of hydrodynamics and heat transfer of sphere cooling using air/water mist two phase flow // IOP Conf. Ser.: Mat. Sc. Eng. 2019. Vol. 552(1). P. 012001.
DOI: https://doi.org/10.1088/1757-899x/552/1/012001
eLIBRARY: https://www.elibrary.ru/item.asp?id=41612376

14. Analysis of evaporating mist flow for enhanced convective heat transfer / N. Kumari, V. Bahadur, M. Hodes et al. // International Journal of Heat and Mass Transfer. 2010. Vol. 53(15-16). P. 3346-3356.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.027

15. Enhanced cooling in a sealed cabinet using an evaporating-condensing dielectric mist / V. Bahadur, M. Hodes, A. Lyons et al. // 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. 2008. P. 1191-1198.
DOI: https://doi.org/10.1109/itherm.2008.4544396

16. Yalcin H. G., Baskaya S., Sivrioglu M. Numerical analysis of natural convection heat transfer from rectangular shrouded fin arrays on a horizontal surface // International Communications in Heat and Mass Transfer. 2008. Vol. 35(3). P. 299-311.
DOI: https://doi.org/10.1016/j.icheatmasstransfer.2007.07.009

17. Barrow H., Pope C.W. Droplet evaporation with reference to the effectiveness of water-mist cooling // Applied Energy. 2007. Vol. 84(4). P. 404-412.
DOI: https://doi.org/10.1016/j.apenergy.2006.09.007

18. Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization / T. Kudo, K. Sekiguchi, K. Sankoda et al. // Ultrasonics Sonochemistry. 2017. Vol. 37. P. 16-22.
DOI: https://doi.org/10.1016/j.ultsonch.2016.12.019

19. Cengel Y. Heat and Mass Transfer. A practical approach. Columbus (GA, USA): Mc-Graw Hill Education, 2003. 874 с.

20. Moffat R.J. Describing the Uncertainties in Experimental Results // Experimental Thermal and Fluid Science. 1988. Vol. 1. P. 3-17.
DOI: https://doi.org/10.1016/0894-1777(88)90043-x

21. Harahap F., McManus H.N. Natural convection heat transfer from horizontal rectangular fin arrays // Journal of Heat Transfer. 1967. P. 32–38.
DOI: https://doi.org/10.1115/1.3614318

22. Baskaya S., Sivrioglu M., Ozek M. Parametric study of natural convection heat transfer from horizontal rectangular fin arrays // International Journal of Thermal Sciences. 2000. Vol. 39(8). P. 797-805.
DOI: https://doi.org/10.1016/s1290-0729(00)00271-4
eLIBRARY: https://www.elibrary.ru/item.asp?id=15144648

Загрузки

Опубликован

25.11.2020

Как цитировать

Абед, А., Хусейни, Х., & Пахалуев, В. (2020). Повышение тепловых характеристик радиатора с вертикальным оребрением при использовании аэрозольно-испарительного охлаждения. Энергетические системы, 5(1), 42–51. извлечено от https://j-es.ru/index.php/journal/article/view/2020-1-005