Study of thermal characteristics of the radiator with vertical finning using aerosol evaporative cooling

Authors

  • Akram Abed University of Technology – Iraq, Baghdad
  • Hamid Hussein University of Technology – Iraq, Baghdad
  • Valery Pakhaluev Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg

Keywords:

cooling, air-and-water aerosol, fog, heat transfer coefficient, radiator

Abstract

The paper is dedicated to the new cooling scheme examination where aerosol is injected directly into the air-cooling system and then the evaporated aerosol is collected and redirected back to the inlet ports. It has examined the air-and-water aerosol influence on the heat extractor characteristics and area of the cooling surface of radiator with parallel square fins considering natural convection as well as radiation. Also, the influence of different characteristics has been examined, such as the concentration of water in aerosol, input power of heating, on the characteristics of the heat extractor.    

Metrics

Metrics Loading ...

References

[APA]

1. Rong, H.Y., & Ming, C. (1995). Optimum Longitudinal Convective Fins Arrays. Int. Communications in Heat and Mass Transfer, 22(3), 445-460. Available: https://doi.org/10.1016/0735-1933(95)00029-X

2. Taheri, A., Moghadam, M.G., Mohammadi, M., Mohammad, P.-F., & Mohammad S. (2020). A new design of liquid-cooled heat sink by altering the heat sink heat pipe application: Experimental approach and prediction via artificial neural network. Energy Conversion and Management, 206, 112485. Available: https://doi.org/10.1016/j.enconman.2020.112485

3. Mira-Hernández, C., Clark, M.D., Weibel, J.A., & Garime S.V. (2018). Development and validation of a semi-empirical model for two-phase heat transfer from arrays of impinging jets. International Journal of Heat and Mass Transfer, 124, 782-793. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.047

4. Yu, Y., Simon, T.W., Zhang, M., Yeom, T., North, M.T., & Cui T. (2014). Enhancing heat transfer in air-cooled heat sinks using piezoelectrically-driven agitators and synthetic jets. International Journal of Heat and Mass Transfer, 184, 184-193. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.001

5. Altun, A.H., & Ziylan O. (2019). Experimental investigation of the effects of horizontally oriented vertical sinusoidal wavy fins on heat transfer performance in case of natural convection. International Journal of Heat and Mass Transfer, 139, 425-431. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.009

6. Zhang, K., Li, M.-J., Wang, F.-L., & He, Y.-L. (2020). Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays. International Journal of Heat and Mass Transfer, 152, 19315. Available: http://doi.org/10.1016/j.icheatmasstransfer.2021.105556

7. Taji, S.G., Parishwad, G.V., & Sane N.K. (2014). Enhanced performance of horizontal rectangular fin array heat sink using assisting mode of mixed convection. International Journal of Heat and Mass Transfer, 72, 250-259. Available: http://doi.org/10.1016/j.ijheatmasstransfer.2014.01.012

8. Güvenç, A., & Yüncü, H. (2001). An experimental investigation on performance of fins on a horizontal base in free convection heat transfer. International Journal of Heat and Mass Transfer, 37(4-5), 409-416. Available: https://doi.org/10.1007/s002310000139

9. Abed, A.H., Shcheklein, S.E., & Pakhaluev, V.M. (2019). Investigation of heat transfer coefficient of spherical element using infrared thermography (IR) and gas-water droplets (mist) as working medium. IOP Conf. Ser.: Mater. Sc. Eng., 481(1), 012033. Available: https://doi.org/10.1088/1757-899x/481/1/012033

10. Khangembam, C., Singh, D., Handique, J., & Singh K. (2020). Experimental and numerical study of air-water mist jet impingement cooling on a cylinder. International Journal of Heat and Mass Transfer, 150, 119368. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119368

11. Yu, F.W., & Chan, K.T. (2011). Improved energy performance of air-cooled chiller system with mist pre-cooling. Applied Thermal Engineering, 31(4), 537-544. Available: https://doi.org/10.1016/j.applthermaleng.2010.10.012

12. Lee, S.L., Yang, Z.H., & Hsyua, Y. Cooling of a Heated Surface by Mist Flow. Journal of Heat Transfer, 116(1), 167-172. Available: https://doi.org/10.1115/1.2910851

13. Abed, A.H., Shcheklein, S.E., & Pakhaluev, V.M. Experimental investigation of hydrodynamics and heat transfer of sphere cooling using air/water mist two phase flow. IOP Conf. Ser.: Mater. Sc. Eng., 552(1), 012001. Available: https://doi.org/10.1088/1757-899x/552/1/012001

14. Kumari, N., Bahadur, V., Hodes, M., Salamon, T., Kolodner, P., Lyons, A., & Garimella S.V. (2010). Analysis of evaporating mist flow for enhanced convective heat transfer. International Journal of Heat and Mass Transfer, 53(15-16), 3346-3356. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.027

15. Bahadur, V., Hodes, M., Lyons A., Krishnan, S., & Garimella, S.V. (2008). Enhanced cooling in a sealed cabinet using an evaporating-condensing dielectric mist. Proc of the 11th Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems. (pp. 1191-1198). Orlando, FL, USA: IEEE. Available: https://doi.org/10.1109/itherm.2008.4544396

16. Yalcin, H.G., Baskaya, S., & Sivrioglu, M. (2008). Numerical analysis of natural convection heat transfer from rectangular shrouded fin arrays on a horizontal surface. International Communications in Heat and Mass Transfer, 35(3), 299-311. Available: https://doi.org/10.1016/j.icheatmasstransfer.2007.07.009

17. Barrow, H., & Pope, C.W. (2007). Droplet evaporation with reference to the effectiveness of water-mist cooling. Applied energy, 84(4), 404-412. Available: https://doi.org/10.1016/j.apenergy.2006.09.007

18. Kudo, T., Sekiguchi, K., Sankoda K., Namiki, N., & Nii S. (2016). Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization. Ultrasonics sonochemistry, 37, 16-22. Available: https://doi.org/10.1016/j.ultsonch.2016.12.019

19. Cengel, Y. Heat and Mass Transfer. A practical approach. Columbus (GA, USA): Mc-Graw Hill Education, 2003. 874 с.

20. Moffat, R.J. (1988). Describing the Uncertainties in Experimental Results. Experimental Thermal and Fluid Science, 1 , 3-17. Available: https://doi.org/10.1016/0894-1777(88)90043-x

21. Harahap, F., & McManus, H.N. (1967). Natural convection heat transfer from horizontal rectangular fin arrays. Journal of Heat Transfer, 89(1), 32–38. Available: https://doi.org/10.1115/1.3614318

22. Baskaya, S., Sivrioglu, M., & Ozek, M. (2000). Parametric study of natural convection heat transfer from horizontal rectangular fin arrays. International Journal of Thermal Sciences, 39(8), 797-805. Available: https://doi.org/10.1016/s1290-0729(00)00271-4

[ГОСТ Р 7.0.5–2008]

1. Rong H. Y., Ming C. Optimum Longitudinal Convective Fins Arrays // Int. Communications in Heat and Mass Transfer. 1995. Vol. 22(3). P. 445-460.
DOI: https://doi.org/10.1016/0735-1933(95)00029-X

2. A new design of liquid-cooled heat sink by altering the heat sink heat pipe application: Experimental approach and prediction via artificial neural network / A. Taheri, M.G. Moghadam, M. Mohammadi et al. // Energy Conversion and Management. 2020. Vol. 206. P. 112485.
DOI: https://doi.org/10.1016/j.enconman.2020.112485

3. Development and validation of a semi-empirical model for two-phase heat transfer from arrays of impinging jets / C. Mira-Hernández, M.D. Clark, J.A. Weibel, S.V. Garime // International Journal of Heat and Mass Transfer. 2018. Vol. 124. P. 782-793.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.047

4. Enhancing heat transfer in air-cooled heat sinks using piezoelectrically-driven agitators and synthetic jets / Y.Yu, T.W. Simon, M. Zhang et al. // International Journal of Heat and Mass Transfer. 2014. Vol. 184. P. 184-193.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.001

5. Altun A.H., Ziylan O. Experimental investigation of the effects of horizontally oriented vertical sinusoidal wavy fins on heat transfer performance in case of natural convection // International Journal of Heat and Mass Transfer. 2019. Vol. 139. P. 425-431.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.009

6. Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays / K. Zhang, M.-J. Li, F.-L. Wang, Y.-L. He // International Journal of Heat and Mass Transfer. 2020. Vol. 152. P. 119315.
DOI: http://doi.org/10.1016/j.icheatmasstransfer.2021.105556

7. Taji, S.G., Parishwad G.V., Sane N.K. Enhanced performance of horizontal rectangular fin array heat sink using assisting mode of mixed convection // International Journal of Heat and Mass Transfer. 2014. Vol. 72. P. 250-259.
DOI: http://doi.org/10.1016/j.ijheatmasstransfer.2014.01.012

8. Güvenç A., Yüncü H. An experimental investigation on performance of fins on a horizontal base in free convection heat transfer // International Journal of Heat and Mass Transfer. 2001. Vol. 37(4-5). P. 409-416.
DOI: https://doi.org/10.1007/s002310000139

9. Abed A.H., Shcheklein S.E., Pakhaluev V.M. Investigation of heat transfer coefficient of spherical element using infrared thermography (IR) and gas-water droplets (mist) as working medium // IOP Conf. Ser.: Mat. Sc. Eng. 2019. Vol. 481(1). P. 012033.
DOI: https://doi.org/10.1088/1757-899x/481/1/012033 [eLIBRARY: 38723553]

10. Experimental and numerical study of air-water mist jet impingement cooling on a cylinder / C. Khangembam, D. Singh, J. Handique, K. Singh // International Journal of Heat and Mass Transfer. 2020. Vol. 150. P. 119368.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119368

11. Yu F.W., Chan K.T. Improved energy performance of air-cooled chiller system with mist pre-cooling // Applied Thermal Engineering. 2011. Vol. 31(4). P. 537-544.
DOI: https://doi.org/10.1016/j.applthermaleng.2010.10.012

12. Lee S.L,, Yang Z.H., Hsyua Y. Cooling of a Heated Surface by Mist Flow // Journal of Heat Transfer. 1994. Vol. 116(1). P. 167-172.
DOI: https://doi.org/10.1115/1.2910851

13. Abed A.H., Shcheklein S.E., Pakhaluev V.M. Experimental investigation of hydrodynamics and heat transfer of sphere cooling using air/water mist two phase flow // IOP Conf. Ser.: Mat. Sc. Eng. 2019. Vol. 552(1). P. 012001.
DOI: https://doi.org/10.1088/1757-899x/552/1/012001
eLIBRARY: https://www.elibrary.ru/item.asp?id=41612376

14. Analysis of evaporating mist flow for enhanced convective heat transfer / N. Kumari, V. Bahadur, M. Hodes et al. // International Journal of Heat and Mass Transfer. 2010. Vol. 53(15-16). P. 3346-3356.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.027

15. Enhanced cooling in a sealed cabinet using an evaporating-condensing dielectric mist / V. Bahadur, M. Hodes, A. Lyons et al. // 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. 2008. P. 1191-1198.
DOI: https://doi.org/10.1109/itherm.2008.4544396

16. Yalcin H. G., Baskaya S., Sivrioglu M. Numerical analysis of natural convection heat transfer from rectangular shrouded fin arrays on a horizontal surface // International Communications in Heat and Mass Transfer. 2008. Vol. 35(3). P. 299-311.
DOI: https://doi.org/10.1016/j.icheatmasstransfer.2007.07.009

17. Barrow H., Pope C.W. Droplet evaporation with reference to the effectiveness of water-mist cooling // Applied Energy. 2007. Vol. 84(4). P. 404-412.
DOI: https://doi.org/10.1016/j.apenergy.2006.09.007

18. Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization / T. Kudo, K. Sekiguchi, K. Sankoda et al. // Ultrasonics Sonochemistry. 2017. Vol. 37. P. 16-22.
DOI: https://doi.org/10.1016/j.ultsonch.2016.12.019

19. Cengel Y. Heat and Mass Transfer. A practical approach. Columbus (GA, USA): Mc-Graw Hill Education, 2003. 874 с.

20. Moffat R.J. Describing the Uncertainties in Experimental Results // Experimental Thermal and Fluid Science. 1988. Vol. 1. P. 3-17.
DOI: https://doi.org/10.1016/0894-1777(88)90043-x

21. Harahap F., McManus H.N. Natural convection heat transfer from horizontal rectangular fin arrays // Journal of Heat Transfer. 1967. P. 32–38.
DOI: https://doi.org/10.1115/1.3614318

22. Baskaya S., Sivrioglu M., Ozek M. Parametric study of natural convection heat transfer from horizontal rectangular fin arrays // International Journal of Thermal Sciences. 2000. Vol. 39(8). P. 797-805.
DOI: https://doi.org/10.1016/s1290-0729(00)00271-4
eLIBRARY: https://www.elibrary.ru/item.asp?id=15144648

Published

2020-11-25

How to Cite

Abed А., Hussein Х., & Pakhaluev В. (2020). Study of thermal characteristics of the radiator with vertical finning using aerosol evaporative cooling. Energy Systems, 5(1), 42–51. Retrieved from https://j-es.ru/index.php/journal/article/view/2020-1-005