Development of technologies for improving the efficiency and reliability of operation of a combined-cycle gas-vapor TPP with a double-circuit waste heat boiler

Authors

  • Anatolii Kudinov Samara State Technical University, Samara
  • Svetlana Ziganshina Samara State Technical University, Samara
  • Kirill Khusainov Samara State Technical University, Samara
  • Iuliia Demina Samara State Technical University, Samara

Keywords:

gas turbine plant, waste heat boiler, combined cycle plant, water vapor, intermediate superheating, efficiency coefficient, reference fuel, saving

Abstract

To increase the saving of a combined-cycle gas-vapor TPP, it was proposed to carry out intermediate superheating of the water vapour flow that has been exhausted in the high-pressure cylinder of a steam turbine in a double-circuit waste heat boiler. Mathematical algorithm and methodology of waste heat boiler are developed. Calculations were made for the steam-gas unit CCGT-450. It is shown that when an intermediate superheater is installed in a waste heat boiler, its efficiency coefficient increases by 2.15%. At the same time, the efficiency coefficient of the CСP for generating electricity increases by 3.36%, the degree of dryness of the steam exhausted in the turbine by 0.082Accordingly, the specific consumption of referense fuel for the generation of electrical energy is reduced by 6.1%. The calculation of the thermal scheme of CCGT-450 for two variants of operation was performed: without the implementation of intermediate overheating of water vapor and with the implementation of intermediate overheating of water vapor that has worked out in the high-pressure cylinder of the steam turbine. During the intermediate overheating of water vapor in the waste heat boiler, the main indicators of the CCGT increase: electric power by 28.96 MW, efficiency coefficient for generating electricity by 3.36% Respectively, the specific consumption of reference fuel for the generation of electrical energy is reduced by 6.1%. At the same time, the saving of reference fuel for CCGT-450 with its operating time of 4,500 hours per year and the cost of reference fuel of 3,700 rubles per ton of reference fuel. fuel in monetary terms is 118.72 million rubles per year.

Metrics

Metrics Loading ...

References

[APA]

1. Trukhniy, A.D. (2013). Parogazovyye ustanovki elektrostantsiy [Steam-gas installations of power plants]. Izdatelskiy dom MEI. [In Russian]

2. Moshkarin, A.V., Devochkin, M.A., Shelygin, B.L. & Rabenko, V.S. (2002). Analiz napravleniy razvitiya otechestvennoy teploenergetiki [Analysis of the directions of development of domestic thermal power engineering]. Izd-vo IGEU. [In Russian]

3. V.D. Burov tt all. (2005). Teplovyye elektricheskiye stantsii [Thermal power stations]. Izd-vo MEI. [In Russian]

4. Kudinov, A.A. (2012). Teplovyye elektricheskiye stantsii. Skhemy i oborudovanye [Thermal power plants. Schemes and equipment]. Izd-vo INFRA-M. [In Russian]

5. Kudinov, A.A. & Ziganshina, S.K. (2019). Parogazovyye ustanovki teplovykh elektricheskikh stantsiy [Combined-cycle gas installations of thermal power plants]. Samar. gos. tekhn. [In Russian]

6. Tsanev, S.V., Burov, V.D. & Remezov, A.N. (2009). Gazoturbinnyye i parogazovyye ustanovki teplovykh elektrostantsiy [Gas turbine and combined-cycle installations of thermal power plants]. Izdatel-skiy dom MEI. [In Russian]

7. Trukhniy, A.D. & Romanyuk A.A. (2016). Raschet teplovykh skhem utilizatsionnykh parogazovykh ustanovok [Calculation of thermal schemes of utilization of gas installations]. Izd-vo INFRA-M. [In Russian]

8. Zysin, L.V. (2010). Parogazovyye i gazoturbinnyye teplovyye elektrostantsii [Combined-cycle and gas turbine thermal power plants]. Izd-vo Politekhn. un-ta. [In Russian]

9. Aleksandrov, A.A. (2006). Termodinamicheskiye osnovy tsiklov teploenergeticheskikh ustanovok [Thermodynamic foundations of cycles of thermal power plants]. Izd-vo MEI. [In Russian]

10. Kindra, V.O., Rogalev, N.D., Lisin, E.M. & Xudyakova, V.P. (2017). Razrabotka i texniko-ekonomicheskiy analiz teplovykh skhem otopitelnykh gazoturbinnykh elektrostantsiy [Development and technical and economic analysis of thermal schemes of heating gas turbine power plants]. Novoye v rossiyskoy elektroenergetike, 3, 6-20. [In Russian]

[ГОСТ]

1. Трухний А.Д. Парогазовые установки электростанций: Учеб. пособие для вузов. М.: Издательский дом МЭИ, 2013. 648 с.

2. Анализ направлений развития отечественной теплоэнергетики / А.В. Мошкарин, М.А. Девочкин, Б.Л. Шелыгин, В.С. Рабенко. Иваново: ИГЭУ, 2002. 256 с.

3. Тепловые электрические станции: учебник для вузов / В.Д. Буров, Е.В. Дорохов, Д.П. Елизаров, В.Ф. Жидких, Е.Т. Ильин, Г.П. Киселев, В.М. Лавыгин, В.Д. Рожнатовский, А.С. Седлов, С.Г. Тишин, С В . Цанев; Под ред. В.М. Лавыгина, А.С. Седлова, С В . Цанева. М.: МЭИ, 2005. 454 с.

4. Кудинов А.А. Тепловые электрические станции. Схемы и оборудование: Учеб. пособие для вузов. М.: ИНФРА-М, 2012. 325 с.

5. Кудинов А.А., Зиганшина С.К. Парогазовые установки тепловых электрических станций: Учеб. пособие для вузов. Самара: Самар. гос. техн. ун-т, 2019. 220 с.

6. Цанев С.В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электростанций: Учеб. пособие для вузов. М.: Издательский дом МЭИ, 2009. 584 с.

7. Трухний А.Д., Романюк А.А. Расчет тепловых схем утилизационных парогазовых установок: Учеб. пособие. М.: ИНФРА-М, 2016. 320 с.

8. Зысин Л.В. Парогазовые и газотурбинные тепловые электростанции: Учеб. пособие. СПб.: Изд.-во Политехн. ун-та, 2010. 368 с.

9. Александров А.А. Термодинамические основы циклов теплоэнергетических установок. М.: МЭИ, 2006. 258 с.

10. Разработка и теxнико-экономический анализ тепловых схем отопительных газотурбинных электростанций / В.О. Киндра, Н.Д. Рогалев, Е.М. Лисин, В.П. Xудякова // Новое в российской электроэнергетике. 2017. № 3. C. 6-20.

Published

2019-12-20

How to Cite

Kudinov А., Ziganshina С., Khusainov К., & Demina Ю. (2019). Development of technologies for improving the efficiency and reliability of operation of a combined-cycle gas-vapor TPP with a double-circuit waste heat boiler. Energy Systems, 4(1), 44–50. Retrieved from https://j-es.ru/index.php/journal/article/view/2019-1-006

URN