Determination of the hydraulic resistance of inclined-corrugated elements of the cooling tower sprinkler unit

Authors

  • Ilnur Madyshev Kazan National Research Technological University, Kazan
  • Aliya Khafizova Kazan National Research Technological University, Kazan

Keywords:

heat exchange, hydraulic resistance, reagentless cooling tower, sprinkler, nozzle

Abstract

The purpose of the ongoing experimental studies is to determine the hydraulic resistance of the cooling tower sprinkler block, which consists of inclined-corrugated contact elements.  The paper presents an original method for cooling circulating water in cooling towers, which allows to significantly reduce the use of chemicals, not inferior in efficiency to analogues. An experimental setup was developed and created, on which hydraulic and heat exchange studies of the inclined-corrugated element of the sprinkler block were carried out. The experiments were carried out on an air-water system. During the experiment, it was revealed that the hydraulic resistance of inclined-corrugated elements is higher than that of jet-film ones.  Despite this, the hydraulic resistance of inclined corrugated contact elements can be reduced by increasing the free cross section for the passage of gas. Thus, it is recommended to increase the diameter of the holes and their number. The temperature regimes in which this block of the attachments and its hydraulic resistance operate are determined, as well as studies show the high efficiency of the developed attachments, which has a low hydraulic resistance, a small percentage of liquid entrainment from the apparatus. In addition, the use of the developed three-furnace scheme for cooling circulating water will significantly reduce the amount of chemical reagents used to containment the development of bacterial deposits.

Metrics

Metrics Loading ...

References

[APA]

1. Farakhov, T.M., Basharov, M.M. & Shigapov, I.M. (2011). Gidravlicheskiye kharakteristiki novykh vysokoeffektivnykh neregulyarnykh teplomassoobmennykh nasadok [Hydraulic characteristics of new highly efficient irregular heat and mass transfer nozzles]. Neftegazovoye delo, 2, 192-207. [In Russian]

2. Zamaleyev, M.M. & Sharapov, V.I. (2015). O meropriyatiyakh po predotvrashcheniyu biologicheskogo zagryazneniya setevoy vody [About measures to prevent biological contamination of mains water]. Novosti teplosnabzheniya, 4, 43-47. [In Russian]

3. Laptev, A.G. (2013). Kontaktnyye nasadki promyshlennykh teplomassoobmennykh apparatov [Contact nozzles of industrial heat and mass transfer devices]. Izd-vo Otechestvo. [In Russian]

4. Chichirova, N.D., Chichirov, A.A., Vlasov, S.M. & Vlasova A.Yu. (2015). Metody snizheniya bakterialnogo zagryazneniya sistem oborotnogo okhlazhdeniya TETs [Methods of reducing bacterial contamination of thermal power plant recycling cooling systems]. Teploenergetika, 7, 62-67. https://doi.org/10.1134/S0040363615070024. [In Russian]

5. Al-Bloushi, M., Saththasivam, J., Al-Sayeghc, S., Jeong, S., Ng, K.C., Amy, G.L. & Leiknes T. (2018). Performance assessment of oxidants as a biocide for biofouling control in industrial seawater cooling towers. Journal of Industrial and Engineering Chemistry, 59, 127-133. https://doi.org/10.1016/j.jiec.2017.10.015

6. B.A. Sokol. A.K. et all. (2009). Nasadki massoobmennykh kolonn [Nozzles of mass-exchange columns]. Izd-vo Infokhim.

7. Madyshev, I.N., Dmitriyev, A.V., Khafizova, A.I.. & Dmitriyeva, O.S. (2019). Razrabotka konstruktsii bloka orositelya bezreagentnoy isparitelnoy gradirni [Development of the design of the sprinkler unit of a non-reactive evaporative cooling tower]. Aktualnyye problemy v mashinostroyenii, 6(1-4) , 162-167. [In Russian]

8. Dmitrieva, O.S., Madyshev, I.N. & Dmitriev, A.V. (2017). Determination of the Heat and Mass Transfer Efficiency at the Contact Stage of a Jet-Film Facility [Determination of the efficiency of heat and mass transfer at the contact stage of a jet-film installation]. Journal of Engineering Physics and Thermophysics, 90(3) , 651-656. https://doi.org/10.1007/s10891-017-1612-z [In Russian]

[ГОСТ]

1. Фарахов Т.М., Башаров М.М., Шигапов И.М. Гидравлические характеристики новых высокоэффективных нерегулярных тепломассообменных насадок // Нефтегазовое дело. 2011. № 2. С. 192-207.

2. Замалеев М.М., Шарапов В.И. О мероприятиях по предотвращению биологического загрязнения сетевой воды // Новости теплоснабжения. 2015. № 4. С. 43-47.

3. Лаптев А.Г. Контактные насадки промышленных тепломассообменных аппаратов. Казань: Отечество, 2013. 454 c.

4. Методы снижения бактериального загрязнения систем оборотного охлаждения ТЭЦ / Н.Д. Чичирова, А.А. Чичиров, С.М. Власов, А.Ю. Власова // Теплоэнергетика. 2015. № 7. С. 62-67.

5. Performance assessment of oxidants as a biocide for biofouling control in industrial seawater cooling towers / M. Al-Bloushi, J. Saththasivam, S. Al-Sayeghc, S.Jeong, K.C. Ng, G.L. Amy, T. Leiknes // Journal of Industrial and Engineering Chemistry. 2018. V. 59. P. 127-133.

6. Насадки массообменных колонн / Б.А. Сокол, А.К. Чернышев, Д.А. Баранов и др. М.: Инфохим, 2009. 358 с.

7. Разработка конструкции блока оросителя безреагентной испарительной градирни / И.Н. Мадышев, А.В. Дмитриев, А.И. Хафизова, О.С. Дмитриева // Актуальные проблемы в машиностроении. 2019. Т. 6, № 1-4. С. 162-167.

8. Dmitrieva O.S., Madyshev I.N., Dmitriev A.V. Determination of the Heat and Mass Transfer Efficiency at the Contact Stage of a Jet-Film Facility // Journal of Engineering Physics and Thermophysics. 2017. V. 90. № 3. P. 651-656.

Published

2019-12-20

How to Cite

Madyshev И., & Khafizova А. (2019). Determination of the hydraulic resistance of inclined-corrugated elements of the cooling tower sprinkler unit. Energy Systems, 4(1), 61–66. Retrieved from https://j-es.ru/index.php/journal/article/view/2019-1-008

URN