Method for determining the characteristics of a gas-steam CHP plant with a steam turbine compressor drive

Authors

  • Vladimir Tian Samara State Technical University, Samara
  • Leonid Sheludko Samara State Technical University, Samara
  • Svetlana Gulina Samara State Technical University, Samara
  • Vladimir Biryuk Samara National Research University, Samara
  • I. Goriunova Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg

Keywords:

electrical and thermal power, waste heat boiler, backpressure steam turbine, gas turbine plant, combined cycle turbine

Abstract

A new type of maneuverable gas-steam CHPP (gas genset -CHP) with a steam turbine drive of a low-pressure compressor is considered. A mathematical model of technological processes in the elements of this plant has been developed. The proposed scheme of a gas-steam plant with a LPC steam drive with an excess air coefficient α = 1.2 in the CS and steam supply from ST1 to the mixing chamber allows, at a small level of GV and πΣK, to reduce the metal consumption of the design of compressors and ST1. The expansion of the gas-steam mixture in the GST contributes to an increase in the temperature in front of the WHB and increases its steam output. The installation between the stages of the fuel afterburning chamber evaporator with a fan for supplying air to it makes it possible to increase the thermal and electrical power of the CCGT with an increase in the indicators of the joint cogeneration generation of heat and electricity. The technological scheme of the gas-steam gas genset -CHP is relatively simple and has lower capital costs compared to the binary cycle CCGT. The introduction of steam into the combustion chamber of the gas turbine engine improves the environmental performance of the gas genset -CHP. Due to the use of the steam drive of the plant compressor in the waste heat boiler of a two-stage evaporator with an afterburner, condensation of the steam component of the gas-steam mixture, as well as two counter-pressure steam turbines, this scheme has increased thermal efficiency and high maneuverability with a significant increase in the generation of electrical and thermal energy during the heating periods of the year.

Metrics

Metrics Loading ...

References

[APA]

1. Biryuk, V.V. et all. (2018) Patent RF № 2650232. Teplofikatsionnaya parogazovaya ustanovka [Combined-cycle heating plant]. Copyright. JSC «Metallist-Samara». Samarskiy Universitet. Date reg. 11.04.2018.

2. Sheludko, L.P. (2011). Patent RF № 2409746. Parogazovaya ustanovka s paroturbinnym privodom kompressora i regenerativnoy gazovoy turbinoy [A combined-cycle gas plant with a steam turbine compressor and a regenerative gas turbine]. Pravoobl. Samarskiy Universitet. Date publ. 20.01.2011.

3. Zaryankin, A.E., Zaryankin, V.A., Storozhuk, S.K. & Arianov, S.V. (2008). Sravnitelnyy analiz skhem PGU s gazoturbinnym i paroturbinnym privodami kompressora [Comparative analysis of CCGT circuits with gas turbine and steam turbine compressor drives]. Gazoturbinnyye tekhnologii, 3, 46. [In Russian]

4. Gulina, S.A., Tyan, V.K., Livshits, M.Yu. & Sheludko, L.P. (2019). Zayavka na izobreteniye RF № 2019127680. Manevrennaya gazoparovaya teploelektrotsentral s parovym privodom kompressora [Maneuverable gas-steam thermal power plant with steam compressor drive]. Date zayavki 03.09.2019.

5. Tsanev, S.V., Burov, V.D., Zemtsov, A.D. & Osyka, F.S. (2011). Gazoturbinnyye energeticheskiye ustanovki [Gas turbine power plants]. Izd. dom MEI. [In Russian]

6. Gulina, S.A. & Sheludko, L.P. (2016). Modelirovaniye termodinamicheskogo tsikla GTD. rabotayushchego na gazoobraznom toplive proizvolnogo sostava [Modeling of a thermodynamic cycle of a gas turbine engine operating on gaseous fuel of arbitrary composition]. Proc. From. of the XXIX mezhd. nauchn. Conf. “Matematicheskiye metody v tekhnike i tekhnologiyakh MMTT – 29“ (Vol.12, pp.67-73). [In Russian]

7. Rivkin, S.L. (1987). Termodinamicheskiye svoystva gazov [Thermodynamic properties of gases]. Izd-vo Energoizdat. [In Russian]

8. Zaryankin, A.E., Zaryankin, V.A., Mager, A.S. & Noskova, M.A. (2015). Parogazovyye ustanovki s dopolnitelnym energeticheskim kotlom i pa-roturbinnym privodom kompressora [Steam-gas installations with an additional power boiler and a turbine compressor drive]. Gazoturbinnyye tekhnologii, 3, 40. [In Russian]

9. Larin, E.A., Livshic, M.YU., Shimanov, A.A., SHelud'ko, L.P. & Shimanov, A.A.. (2018). Blochnaya teplofikatsionnaya parogazovaya ustanovka [Block heating combined-cycle gas plant]. IFG, 91, 1089-1097. [In Russian]

[ГОСТ]

1. Патент РФ № 2650232. Теплофикационная парогазовая установка / В.В. Бирюк, Ю.Г. Кирсанов, М.Ю. Лившиц, А.Б. Цапкова, Л.П. Шелудько; Правообл. АО «Металлист-Самара»; Самарский Университет. Дата рег. 11.04.2018.

2. Патент РФ № 2409746. Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной / Л.П. Шелудько; Правообл. Самарский Университет. Дата публ. 20.01.2011.

3. Сравнительный анализ схем ПГУ с газотурбинным и паротурбинным приводами компрессора / А.Е. Зарянкин, В.А. Зарянкин, С.К. Сторожук, С.В. Арианов // Газотурбинные технологии. 2008. № 3. С. 46.

4. Заявка на изобретение РФ № 2019127680. Маневренная газопаровая теплоэлектроцентраль с паровым приводом компрессора / С.А. Гулина, В.К. Тян, М.Ю. Лившиц, Л.П. Шелудько. Дата заявки 03.09.2019.

5. Газотурбинные энергетические установки / С.В. Цанев, В.Д. Буров, А.Д. Земцов, Ф.С. Осыка. М.: Изд. дом МЭИ, 2011. 427 с.

6. Гулина С.А., Шелудько Л.П. Моделирование термодинамического цикла ГТД, работающего на газообразном топливе произвольного состава // Сб. тр. XXIX межд. научн. конф. «Математические методы в технике и технологиях ММТТ – 29». Том 12. Саратов, 2016. С 67-73.

7. Ривкин С.Л. Термодинамические свойства газов. Справочник: в 2 т. М.: Энергоиздат, 1987. 288 с.

8. Парогазовые установки с дополнительным энергетическим котлом и паротурбинным приводом компрессора / А.Е. Зарянкин, В.А. Зарянкин, А.С. Магер, М.А. Носкова // Газотурбинные технологии. 2015. № 3. С. 40.

9. Блочная теплофикационная парогазовая установка / Е.А. Ларин, М. Ю. Лившиц, А.А. Шиманов, Л.П. Шелудько, А.А. Шиманов // ИФЖ. 2018. Т. 91, № 4. С. 1089-1097.

Published

2019-12-20

How to Cite

Tian В., Sheludko Л., Gulina С., Biryuk В., & Goriunova И. (2019). Method for determining the characteristics of a gas-steam CHP plant with a steam turbine compressor drive. Energy Systems, 4(1), 74–80. Retrieved from https://j-es.ru/index.php/journal/article/view/2019-1-010

URN