Comprehensive study of the efficiency of combining NPP with a multifunctional thermal storage system

Authors

  • Valeriy Yurin Saratov Scientific Center of the Russian Academy of Sciences, Saratov

Keywords:

nuclear power plant, phase change heat accumulator, multifunctional additional steam turbine plant, NPP auxiliary needs reservation

Abstract

A method has been developed for combining a NPP with a multifunctional thermal storage system, which includes a phase transition accumulator and an additional low-power STU. The use of a storage system will allow optimizing the structure of power generating capacities with the possibility of increasing the share of powerful power units in the UES will reduce emissions into the environment and increase the export of natural gas and other oil products by reducing the share of thermal power plants operating on fossil fuels. In addition, the presence of a low-power STP as part of the system makes it possible to ensure the backup of the NPP's own needs in the event of a complete blackout. The work carried out a comprehensive analysis of the effectiveness of the developed system, taking into account the requirements of the energy sales market, predicted daily differentiated tariffs and the economic annual effect of reducing the risk of damage to the reactor core in emergency situations with a plant blackout. The calculations also took into account the results of phase change accumulator design optimization on the basis of a previous study of the effect of the cyclic phase change accumulator operation on its resource. Based on the data of the forecast of the Ministry of Economic Development of Russia, a comprehensive study of the effectiveness of the developed storage system was carried out under the conditions of fulfilling the requirements of the System Operator of the Unified Energy System of Russia on the participation of NPPs in the overall primary regulation of the current frequency in the power system, taking into account the effect of increasing NPP safety. Calculations have shown that the system will fully pay off in 13-17 years.

Metrics

Metrics Loading ...

References

[APA]

1. Aminov, R.Z., Yurin, V.E. & Egorov, A.N. (2019). Kombinirovaniye AES s mnogofunktsionalnymi energeticheskimi ustanovkami [Combining nuclear power plants with multifunctional power plants]. Izd-vo Nauka. [In Russian]

2. Yurin, V.E., Moskalenko, A.B. & Murtazov, M.A. (2019). Otsenka dolgovechnosti teploobmennoy trubki akkumulyatora fazovogo perekhoda. rabotayushchego v sostave AES [Evaluation of the durability of the heat exchange tube of the phase transition accumulator operating in the NPP system]. Trudy Akademenergo, 1, 63-71. [In Russian]

3. Levenberg, V.D., Tkach, M.R. & Golstrem, V.A. (1991). Akkumulirovaniye tepla [Heat accumulation]. Izd-vo «Tekhnika». [In Russian]

4. Bekman, G. & Gilli, P. (1987). Teplovoye akkumulirovaniye energii [Thermal energy storage]. Izd-vo Mir. [In Russian]

5. Lukianov, A.V., Ostapenko, V.V. & Aleksandrov, V.D. (2010). Akkumulyatory teplovoy energii na osnove fazovogo perekhoda [Accumulators of thermal energy based on a phase transition]. Vestnik Donbaskoї natsіonalnoї akademії budіvnitstva і arkhіtekturi, 6(86), 64-68. [In Russian]

6. Rossikhin, N.A. (2009). Raschet i proyektirovaniye akkumulyatorov teploty na fazovykh perekhodakh (kapsulnogo tipa) [Calculation and design of heat accumulators at phase transitions (capsule type)]. Izd-vo MGTU im. N.E. Baumana. [In Russian]

7. S. Raoux, M. Wuttig.(2009) Phase Change Materials Springer.

8. Fultz, B. (2014). Phase Transitions in Materials. Cambridge University Press.

9. Babayev, B.D. (2016). Razrabotka i issledovaniye energosistem na osnove vozobnovlyayemykh istochnikov s fazoperekhodnym akkumulirovaniyem tepla [Development and research of energy systems based on renewable sources with phase-transition heat storage]. Dagestanskiy gos. un-t. [In Russian]

10. Mozgovoj, A.G., SHpilrajn, E.E., Dibirov, M.A., Bochkov, M.M., Levina, L.N. & Kenisarin M.M. (1990). Teplofizicheskiye svoystva teploakkumuliruyushchikh materialov [Thermophysical properties of heat-accumulating materials]. Obzory po teplofizicheskim svoystvam veshchestv, 2(82) , 105. [In Russian]

[ГОСТ]

1. Аминов Р.З., Юрин В.Е., Егоров А.Н. Комбинирование АЭС с многофункциональными энергетическими установками. М.: Наука, 2018. 240 с.

2. Юрин В.Е., Москаленко А.Б., Муртазов М.А. Оценка долговечности теплообменной трубки аккумулятора фазового перехода, работающего в составе АЭС // Труды Академэнерго. 2019. № 1. С. 63-71.

3. Левенберг В.Д., Ткач М.Р, Гольстрем В.А. Аккумулирование тепла. К.: «Тэхника», 1991. 112 с.

4. Бекман Г., Гилли П. Тепловое аккумулирование энергии. М.: Мир, 1987. 272 с.

5. Лукьянов А.В., Остапенко В.В., Александров В.Д. Аккумуляторы тепловой энергии на основе фазового перехода // Вісник Донбаської національної академії будівництва і архітектури. 2010. № 6 (86). С. 64-68.

6. Россихин Н.А. Расчет и проектирование аккумуляторов теплоты на фазовых переходах (капсульного типа): Методические указания. М.: МГТУ им. Н.Э. Баумана, 2007. 33 с.

7. Phase Change Materials / Ed. by S. Raoux, M. Wuttig. Springer US, 2009. 430 p.

8. Phase Transitions in Materials / Ed. by B. Fultz. Cambridge: Cambridge University Press, 2014. 583 p.

9. Бабаев Б.Д. Разработка и исследование энергосистем на основе возобновляемых источников с фазопереходным аккумулированием тепла.: дисс. … д-ра тех. наук. Махачкала: Дагестанский гос. ун-т, 2016. 213 с.

10. Теплофизические свойства теплоаккумулирующих материалов / А.Г. Моз¬говой, Э.Э. Шпильрайн, М.А. Дибиров, М.М. Бочков, Л.Н. Левина, М.М. Кенисарин // Обзоры по теплофизическим свойствам веществ. Вып. № 2 (82). М.: ИВТАН, 1990. 105 с.

Published

2019-12-20

How to Cite

Yurin В. (2019). Comprehensive study of the efficiency of combining NPP with a multifunctional thermal storage system. Energy Systems, 4(1), 81–87. Retrieved from https://j-es.ru/index.php/journal/article/view/2019-1-011

URN