Use of infrared crystal fiber in bearings temperature sensing system inside an NPP containment

Authors

  • Maksim Kharaim Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg
  • Viacheslav Kostarev Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg
  • Natal'ya Akif’eva Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg
  • Anastasiya Yuzhakova Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg
  • Liya Zhukova Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg
  • Aleksandr Korsakov Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg

Keywords:

infrared optical fiber, silver halide, thallium halide, non-contact temperature measurement, containment of NPP

Abstract

The flexible fiber made of crystal systems AgBr – TlI and AgBr – TlBr0,46I0,54 has radioresistance properties, can be produced with permissible length, characterized by low optical losses with a small number and large radius of curves. This allows to use it for transmission of temperature signal from the surface of NPP equipment, including moving parts installed in the containment of NPP. Implementation of this method allows to avoid the operation of activated sensing elements in conditions of gamma and neutron fields of NPP containment. The optical fiber, suggested in the paper, is produced by the method of extrusion from single-crystal of silver and thallium halides and transparent in the mid-infrared band from 2,0 to 25,0 µm which is equivalent to the temperature range of -200…+1100°С. 

Metrics

Metrics Loading ...

References

[APA]

1. Yuzhakova, A., Zhukova, L., Akif’eva, N., Krasnov, D., & Korsakov, A. (2020). Application of Infrared Polycrystalline Fibers in Thermal Imaging Temperature Control Systems. Sensors and Actuators A: Physical, 314, 112237. Available: http://doi.org/10.1016/j.sna.2020.112237

2. Salimgareev, D., Lvov, E., Korsakova, E., Korsakov, A., & Zhukova, L. (2019). Crystals of AgBr–TlBr0.46I0.54 system: Synthesis, Structure, Properties, and Application. Materials Today Communications, 20(12), 100551. Available: http://doi.org/10.1016/j.mtcomm.2019.100551

3. Korsakova, E., Lvov, A., Salimgareev D., Korsakov, A., Markham, S., Mani, A., Silien, C., Syed, T.A.M., & Zhukovaa L. (2018). Stability of MIR Transmittance of Silver and Thallium Halide Optical Fibers in Ionizating β- and γ-Radiation from Nuclear Reactors. Infrared Physics and Technology, 93, 171-177. Available: https://doi.org/10.1016/j.infrared.2018.07.031

4. Gordov, A.N, Zhagullo, O.M., & Ivanova A.G. (1992). Osnovy temperaturnyh izmerenij [Basics of Temperature Measurement]. Moscow: Energoatomizdat.

5. Liu, Y., Tian, Y., Fan X., Bu, Y., He, P., Li, H., Yin, J., & Zheng X. (2018). Feasibility Study of Transformer Winding Temperature and Strain Detection Based on Distributed Optical Fibre Sensors. Sensors, 18(11), 3932. Available: http://doi.org/10.3390/s18113932

6. Lavi, Y., Millo, A., & Katzir, A. (2006). Flexible Ordered Bundles of Infrared Transmitting Silver-Halide Fibers: Design, Fabrication, and Optical Measurements. Applied Optics, 45(23), 5808-5814. Available: http://doi.org/10.1364/AO.45.005808

7. Dziedzic, A., Golonka, L., Kozlowski, J., Licznerski, B.W. and Nitsch, K. (1999). Thick-Film Resistive Temperature Sensors. Measurement Science and Technology, 8(1), 78-85. Available: http://doi.org/10.1088/0957-0233/8/1/011

8. Barker, M., & Jones, R. (2003). Inversion of Spectral Emission Measurements to Reconstruct the Temperature Profile Along a Blackbody Optical Fiber Thermometer. Inverse Problems in Engineering, 11(6), 495-513. Available: http://doi.org/10.1080/1068276031000098009

9. Perić, D., Livada, B., Perić, S., & Vujić, S. (2019). Thermal Imager Range: Predictions, Expectations, and Reality. Sensors, 19(15), 3313. Available: https://doi.org/10.3390/s19153313

10. Planck, M. (1914). The Theory of Heat Radiation. Philadelphia: Blakiston's Son & Co.

[ГОСТ Р 7.0.5–2008]

1. Application of Infrared Polycrystalline Fibers in Thermal Imaging Temperature Control Systems / A.A. Yuzhakova, L.V. Zhukova, N.N. Akif’eva et al. // Sensors and Actuators A: Physical. 2020. Vol 314. P. 112237.
DOI: http://doi.org/10.1016/j.sna.2020.112237
eLIBRARY: https://www.elibrary.ru/item.asp?id=45393463

2. Crystals of AgBr–TlBr0.46I0.54 system: Synthesis, Structure, Properties, and Application / D.D. Salimgareev, A.E. Lvov, E.A Korsakova et al. // Materials Today Communications. 2019. Vol 20(12). P. 100551.
DOI: http://doi.org/10.1016/j.mtcomm.2019.100551
eLIBRARY: https://www.elibrary.ru/item.asp?id=41637955

3. Stability of MIR Transmittance of Silver and Thallium Halide Optical Fibers in Ionizating β- and γ-Radiation from Nuclear Reactors / E. Korsakova, A. Lvov, D. Salimgareev et al. // Infrared Physics and Technology. 2018. Vol. 93. P. 171-177.
DOI: https://doi.org/10.1016/j.infrared.2018.07.031
eLIBRARY: https://www.elibrary.ru/item.asp?id=35788473

4. Гордов А.Н, Жагулло О.М., Иванова А.Г. Основы температурных измерений. М.: Энергоатомиздат, 1992. 303 c.

5. Feasibility Study of Transformer Winding Temperature and Strain Detection Based on Distributed Optical Fibre Sensors / Y. Liu, Y. Tian, X. Fan et al. // Sensors. 2018. Vol 18(11). P. 3932.
DOI: http://doi.org/10.3390/s18113932

6. Lavi Y., Millo A., Katzir A. Flexible Ordered Bundles of Infrared Transmitting Silver-Halide Fibers: Design, Fabrication, and Optical Measurements // Applied Optics. 2006. Vol 45(23). P. 5808-5814.
DOI: http://doi.org/10.1364/AO.45.005808

7. Thick-Film Resistive Temperature Sensors / A. Dziedzic, L. Golonka, J. Kozlowski et al. // Measurement Science and Technology. 1999. Vol 8(1). P. 78-85.
DOI: http://doi.org/10.1088/0957-0233/8/1/011

8. Barker, M. Jones R. Inversion of Spectral Emission Measurements to Reconstruct the Temperature Profile Along a Blackbody Optical Fiber Thermometer // Inverse Problems in Engineering. 2003. Vol. 11(6). P. 495-513.
DOI: http://doi.org/10.1080/1068276031000098009

9. Thermal Imager Range: Predictions, Expectations, and Reality / D. Perić, B. Livada, S. Perić, S. Vujić // Sensors. 2019. Vol. 19(15). P. 3313.
DOI: https://doi.org/10.3390/s19153313

10. Planck M. The Theory of Heat Radiation. Philadelphia: Blakiston's Son & Co., 1914. 252 p.

Published

2020-11-25

How to Cite

Kharaim М., Kostarev В., Akif’eva Н., Yuzhakova А., Zhukova Л., & Korsakov А. (2020). Use of infrared crystal fiber in bearings temperature sensing system inside an NPP containment. Energy Systems, 5(1), 86–92. Retrieved from https://j-es.ru/index.php/journal/article/view/2020-1-010