Simulation of the optimal configuration gas flame formation in a cement rotating kiln

Authors

  • Alexander Trulev Belgorod State Technological University named after V.G. Shukhov
  • Valery Kuznetsov Belgorod State Technological University named after V.G. Shukhov

Keywords:

natural gas, combustion, flame, flame shape, flame length, burner position

Abstract

The aim of the work is to study the influence of the conditions of diffusion combustion of natural gas on the efficiency of heat transfer in a cement rotary kiln. The effectiveness of the thermal operation modes of a cement rotary kiln has been evaluated. The mechanism of the influence of the fuel outflow rate from the burner nozzle and the burner inclination on the parameters of diffusion combustion and heat transfer from the standpoint of rational fuel combustion is determined. It has been established that in furnaces of large diameter, the small length of the flame causes overheating of the clinker in the sintering zone of the furnace. The torch becomes too sensitive to the angle of inclination of the burner, so the regulation of combustion is difficult. For furnaces of large diameter, it is preferable to work with a long flame with a uniform temperature distribution along the length. But at the same time, a buoyant force arises, which presses the torch to the top of the furnace. This impairs mixing with air and leads to under burning of the fuel.

Metrics

Metrics Loading ...

References

[APA]

1. Ruhland, W. (1967). Investigation of flames the cement rotary kiln, J. Inst. Fuel, 40, 69-75.

2. Klassen, V.K. (1994). Obzhig tsementnogo klinkera [Roasting cement clinker]. Stroyizdat. [In Russian].

3. Konovalov, V.M., Klassen, V.K., Pereskok, S.A., & Novosyolov, A.G. (2018). Peculiarities of fuel burning in dry and wet cement production kilns IOP Conf. Ser.: Earth Environ. Sci., 194. 052016. http://dx.doi.org/10.1088/1755-1315/194/5/052016

4. Boateng, A.A. (2016). Rotary Kilns: Transport Phenomena and Transport Processes (Second Edition). Elsevier (Butterworth-Heinemann).

5. Nial, M., Loukarfi, L., & Naji, H. (2020). Aerodynamic control of a diffusion flame to optimize materials' transition in a rotary cement kiln. Mechanics & Industry, 21, 414. https://doi.org/10.1051/meca/2020043

6. Kuznetsov, V.A., & Trubaev, P.A. (2017). Vozmozhnosti i problemy matematicheskogo modelirovaniya teplotekhnologicheskikh protsessov [Possibilities and problems of mathematical modeling of heat engineering processes]. Energy Systems, 1, 54-61 [In Russian].

7. Nuss, M.V., Trubaev, P.A., & Klassen, V.K. (2013). Upravleniye rabotoy tsementnoy vrashchayushcheysya pechi [Operation control of cement rotary kiln]. Vestnik BGTU im V. G. Shukhova, 1, 61-65 [In Russian].

8. Kuznetsov, V. (2015). Mathematic Simulating Processes in High-Temperature Plants: Results, Methods and Algorithms. Scholars' Press.

9. Ryazantsev, O.A. (2012). Metody matematicheskogo modelirovaniya teploobmena pri gorenii prirodnogo gaza [Methods for Mathematical Modeling of Heat Transfer during Natural Gas Combustion] [PhDS diss., BGTU im V. G. Shukhova] [In Russian].

10. Kuznetsov, V.A., Ryazantsev, O.A., & Trulyov, A.V. (2011). Chislennoye modelirovaniye goreniya i teploobmena v tsementnoy vrashchayushcheysya pechi [Numerical Simulation of Combustion and Heat Transfer in a Cement Rotary Kiln]. Vestnik BGTU im V. G. Shukhova, 4. 161-164 [In Russian].

11. Lowes, T.M., & Evans, L.P. (1993). The effect of burner design and operating parameters on flame shape, heat transfer, NOx and SO3 cycles. Zement-Kalk-Gips. 12. P. 761-768.

12. Trubaev, P.A. (2007). Energotekhnologicheskiy analiz vysokotemperaturnykh protsessov i apparatov proizvodstva silikatnykh materialov [Energy-technological analysis of high-temperature processes and devices for the production of silicate materials]. Vestnik BGTU im V. G. Shukhova, 1, 11-13 [In Russian].

[ГОСТ Р 7.0.5–2008]

1. Ruhland W., 1967. Investigation of flames in the cement rotary kiln // J. Inst. Fuel. 1967. No 40. P. 69-75.

2. Классен В.К. Обжиг цементного клинкера. Красноярск: Стройиздат, 1994. 323 с.

3. Konovalov V.M., Klassen V.K., Pereskok S.A., Novosyolov A.G. Peculiarities of fuel burning in dry and wet cement production kilns // IOP Conf. Ser.: Earth Environ. Sci. 2018. No 194. P. 052016.
eLIBRARY: https://elibrary.ru/item.asp?id=31029218
DOI: http://dx.doi.org/10.1088/1755-1315/194/5/052016

4. Boateng A.A. Rotary Kilns: Transport Phenomena and Transport Processes. Second Edition. Oxford: Elsevier (Butterworth-Heinemann), 2016. 368 p.

5. Nial M., Loukarfi L., Naji H. Aerodynamic control of a diffusion flame to optimize materials' transition in a rotary cement kiln // Mechanics & Industry.2020. No 21. P. 414.
DOI: https://doi.org/10.1051/meca/2020043

6. Кузнецов В.А., Трубаев П.А. Возможности и проблемы математического моделирования теплотехнологических процессов // Энергетические системы. 2017. № 1. С. 54-61.
eLIBRARY: https://www.elibrary.ru/item.asp?id=45541171

7. Нусс М.В., Трубаев П.А., Классен В.К. Управление работой цементной вращающейся печи // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2013. № 1. С. 61-65.
eLIBRARY: https://www.elibrary.ru/item.asp?id=18761379

8. Kuznetsov V. Mathematic Simulating Processes in High-Temperature Plants: Results, Methods and Algorithms. Chisinau: Scholars' Press, 2015. 188 p.

9. Рязанцев О.А. Методы математического моделирования теплообмена при горении природного газа // Диссертация на соискание ученой степени кандидата технических наук. – БГТУ им. В.Г. Шухова, Белгород, 2012. 116 c.

10. Кузнецов В.А., Рязанцев О.А., Трулёв А. В. Численное моделирование горения и теплообмена в цементной вращающейся печи // // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2011. № 4. С. 161-164.
eLIBRARY: https://elibrary.ru/item.asp?id=17723651

11. Lowes T.M., Evans L.P. The effect of burner design and operating parameters on flame shape, heat transfer, NOx and SO3 cycles // Zement-Kalk-Gips. 1993. №12. P. 761-768.

12. Трубаев П.А. Энерготехнологический анализ высокотемпературных процессов и аппаратов производства силикатных материалов // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2007. № 1. С. 11-13.
eLIBRARY: https://www.elibrary.ru/item.asp?id=17110971

Published

2021-12-30

How to Cite

Trulev А., & Kuznetsov В. (2021). Simulation of the optimal configuration gas flame formation in a cement rotating kiln. Energy Systems, 6(1), 32–40. Retrieved from https://j-es.ru/index.php/journal/article/view/2021-1-003

URN