Research of the problems of heat recovery of sewerage flows in residential buildings

Authors

  • Dmitry Vybornov Donbas National Academy of Civil Engineering and Architecture
  • Zlata Udovichenko Donbas National Academy of Civil Engineering and Architecture
  • Nikolay Dolgov Donbas National Academy of Civil Engineering and Architecture

Keywords:

wast water, heat pump, energy saving, thermal potential, secondary energy resources

Abstract

Household activities of people and industrial technological processes generate a colossal amount of energy, which is often dumped into water bodies, sometimes without a proper cleaning and cooling process. Subsequently, pollution of various kinds of substances and suspended particles occurs, in parallel with uncontrolled thermal emissions, which leads to a serious disruption of the ecosystem of natural objects. Using the thermal potential of wastewater is, to some extent, a rational solution, both for improving the ecological situation and for some economic benefit. Since industrial effluents should be considered in relation to each, separately taken, particular case, due to the variability of the chemical composition, thermal potential and the possible degree of utilization, the issue of utilizing the heat of domestic wastewater deserves special attention. The plant variants offered on the market provide specialized equipment with already completed components, and the wide variety of assortments makes it somewhat difficult to find the most efficient scheme. In order to find a balanced solution between cost and performance, it becomes necessary to research each individual work component. Thanks to this, it is possible to find out which designs are most acceptable for specific initial parameters of the primary coolant, in particular, domestic wastewater.

Metrics

Metrics Loading ...

References

[APA]

1. Chua, К.J., Chou, S.K., & Yang, W.M. (2010). Advances in heat pump systems: A review. Applied Energy, 87(12) , 3611-3624. https://doi.org/10.1016/J.APENERGY.2010.06.014

2. Hepbasli, A., Biyik, E., Ekren O., Gunerhan, H., & Araz, M. (2014). A key review of wastewater source heat pump (WWSHP) systems. Energy Conversion and Management, 88, 700-722. https://doi.org/10.1016/J.ENCONMAN.2014.08.065

3. Arnell, M., Lundin, E., & Jeppsson, U. (2017). Sustainability Analysis for Wastewater Heat Recovery – Literature Review: Technical Report. Lund University, Division of Industrial Electrical Engineering and Automation (IEA). http://dx.doi.org/10.13140/RG.2.2.27365.91364

4. Mazhar, A., Liu, S., & Shukla, A. A (2018). Key Review of Non-Industrial Greywater Heat Harnessing. Energies, 11(2) , 386. http://dx.doi.org/10.3390/en11020386

5. Gasho, E.G., Kozlov, S.A., Puzakov, V.S., Razoronov, R.N., Sveshnikov, N.I., & Stepanova M.V. (2017). Teplovyye nasosy v sovremennoy promyshlennosti i kommunal'noy infrastrukture. Informatsionno-metodicheskoye izdaniye [Heat pumps in modern industry and public infrastructure. Information and methodical publication]. Izdatel'stvo “Pero” [In Russian].

6. Novak, T. (2021). Yevropeyskiy rynok teplovykh nasosov [European market for heat pumps]. ABOK, 7, 50-53. https://www.abok.ru/for_spec/articles.php?nid=6506 [In Russian]

7. Demir, H., Modedi, M., & Ulku, S. (2008). A review on adsorption heat pump: Problems and solutions. Renewable and Sustainable Energy Reviews, 12(9) , 2381-2403. https://doi.org/10.1016/J.RSER.2007.06.005

8. Wu, W., Wang, B., Shi W., & Li X. (2014). Absorption heating technologies: A review and perspective. Applied Energy, 130, 51-71. http://dx.doi.org/10.1016/j.apenergy.2014.05.027

9. Liner, B., Tarallo, S., Fillmore, L., & Peot C. (2014). Opportunities for Distributed Electricity Generation at Wastewater Facilities. In ASME 2014 Power Conference (Vol. 2, pp. V002T10A008). ASME. https://doi.org/10.1115/POWER2014-32190

10. Hao, X., Li, J., van Loosdrecht, M.C.M., Jiang, H., & Liu R. (2019). Energy recovery from wastewater: Heat over organics. Water Research, 161, 74-77. http://dx.doi.org/10.1016/j.watres.2019.05.106

11. Frijns, J., Hofman, J., & Nederlof M. (2013). The potential of (waste) water as energy carrier. Energy Conversion and Management, 65, 357-363. http://dx.doi.org/10.1016/j.enconman.2012.08.023

12. Jacobs, H.E., Botha, B.E., & Blokker, E.J.M. (2018). Household hot water temperature – an analysis at end-use level. In WDSA/CCWI Joint Conference 2018 (Vol. 1, p. 159703). Kingston Queen's University. https://ojs.library.queensu.ca/index.php/wdsa-ccw/article/view/12465

[ГОСТ Р 7.0.5–2008]

1. Chua К.J., Chou S.K., Yang W.M. Advances in heat pump systems: A review // Applied Energy, 2010. Vol. 87(12). Р. 3611-3624.
DOI: https://doi.org/10.1016/J.APENERGY.2010.06.014

2. A key review of wastewater source heat pump (WWSHP) systems / A. Hepbasli, E. Biyik, O. Ekren et al. // Energy Conversion and Management, 2014. Vol. 88. P. 700-722.
DOI: https://doi.org/10.1016/J.ENCONMAN.2014.08.065

3. Arnell M., Lundin E., Jeppsson U. Sustainability Analysis for Wastewater Heat Recovery – Literature Review: Technical Report. Lund, Sweden: Lund University, Division of Industrial Electrical Engineering and Automation (IEA), 2017. 40 p.
DOI: http://dx.doi.org/10.13140/RG.2.2.27365.91364

4. Mazhar A., Liu S., Shukla A. A Key Review of Non-Industrial Greywater Heat Harnessing // Energies, 2018, Vol. 11(2), Р. 386.
DOI: http://dx.doi.org/10.3390/en11020386

5. Тепловые насосы в современной промышленности и коммунальной инфраструктуре. Информационно-методическое издание / Е.Г. Гашо, С.А. Козлов, В.С. Пузаков и др. М.: Издательство «Перо», 2017. 204 с.

6. Новак Т. Европейский рынок тепловых насосов // АВОК, 2021, № 7. С. 50-53.
URL: https://www.abok.ru/for_spec/articles.php?nid=6506
eLIBRARY ID: https://www.elibrary.ru/item.asp?id=46659057

7. Demir H., Modedi M., Ulku S. A review on adsorption heat pump: Problems and solutions // Renewable and Sustainable Energy Reviews, 2008. Vol. 12(9). Р. 2381-2403.
DOI: https://doi.org/10.1016/J.RSER.2007.06.005

8. Absorption heating technologies: A review and perspective / W. Wu, B. Wang, W. Shi, X. Li // Applied Energy, 2014. Vol. 130. Р. 51-71.
DOI: http://dx.doi.org/10.1016/j.apenergy.2014.05.027

9. Opportunities for Distributed Electricity Generation at Wastewater Facilities / B. Liner, S. Tarallo, L. Fillmore, C. Peot // ASME 2014 Power Conference. Vol. 2. Baltimore: ASME, 2014 Р. V002T10A008.
DOI: https://doi.org/10.1115/POWER2014-32190

10. Energy recovery from wastewater: Heat over organics // X. Hao, J. Li, M.C.M. van Loosdrecht et al. // Water Research, 2019. Vol. 161. Р. 74-77.
DOI: http://dx.doi.org/10.1016/j.watres.2019.05.106

11. Frijns J., Hofman J., Nederlof M. The potential of (waste) water as energy carrier // Energy Conversion and Management, 2013. Vol. 65. Р. 357-363.
DOI: http://dx.doi.org/10.1016/j.enconman.2012.08.023

12. Jacobs H.E., Botha B.E., Blokker E.J.M. Household hot water temperature – an analysis at end-use level // WDSA/CCWI Joint Conference 2018, Vol. 1. Kingston: Queen's University, 2018. P. 159703.
URL: https://ojs.library.queensu.ca/index.php/wdsa-ccw/article/view/12465

Published

2021-12-30

How to Cite

Vybornov Д., Udovichenko З., & Dolgov Н. (2021). Research of the problems of heat recovery of sewerage flows in residential buildings. Energy Systems, 6(1), 70–80. Retrieved from https://j-es.ru/index.php/journal/article/view/2021-1-007

URN