Adaptation of buildings to climate change with energy-efficient glazing

Authors

  • Kira Sergeeva National Research University "Moscow Power Engineering Institute"
  • Roman Perepelitsa National Research University "Moscow Power Engineering Institute"

Keywords:

energy saving, energy-efficient glazing, climate change, adaptation of buildings, internal micro-climate, economy.

Abstract

The questions of climate change, which are the most relevant at the present time, cause us to think about life in modern realities. Common anomalies require adaptation and effective solutions to provide comfort. The combined effect of outdoor temperature transitions through 0°С and humidity has a negative impact on the condition of the building and the inside microclimate. Most of the buildings that exist now are designed for climatic parameters that differ significantly from modern ones, so the question of adapting objects requires extra attention. Global tendencies are aimed at the openness of rooms to sunlight. The use of a large amount of glazing in objects has a positive effect both on the condition of people and on the level of insolation. Two objects were investigated: the building "E" Bastillia of the NRU "MPEI", which was built in 1929, and the Residential Complex "Mendeleev" in the city of Khimki. Both objects have a high proportion of glazing, which prompted an analysis of the use of energy-efficient glazing in these buildings. After completing the complex of works, it was found that energy-saving glass surfaces not only help to achieve a significant economic effect, but also solve the problem of a comfortable microclimate inside. Using this technology solves the problem of energy saving in buildings, and in combination with other energy-saving measures, maximum efficiency and economic benefits will be achieved.

Metrics

Metrics Loading ...

References

[APA]

1. Gasho, E.G., Guzhov, S.V., Beloborodova, A.S., & Gukova N.V. (2019). Vliyaniye vybrosov vodyanogo para ot raboty TETS, kotel'nykh i avtotransporta na lokal'nyye klimaticheskiye izmeneniya i klimaticheskuyu adaptatsiyu megapolisa na primere Moskvy [The influence of water vapor emissions from the operation of thermal power plants, boiler houses and vehicles on local climate change and climate adaptation of a megalopolis on the example of Moscow]. Nadezhnost' i Bezopasnost' Energetiki, 3(12) , 109-199 [In Russian]. https://doi.org/10.24223/1999-5555-2019-12-3-190-199

2. Raspisaniye pogody, Ltd (n.d.) Arkhiv pogody v Moskve [Moscow weather archive]. Retrieved October 16, 2021 from https://rp5.ru/Архив_погоды_в_Москве_(ВДНХ) [In Russian]

3. Kul'bachevskiy A.O. (Ed.). (2021). O sostoyanii okruzhayushchey sredy v gorode Moskve v 2020 godu [On the state of the environment in the city of Moscow in 2020]. Kompleks gorodskogo khozyaystva goroda Moskvy. https://www.mos.ru/eco/documents/doklady/view/259642220/ [In Russian]

4. Perepelitsa, R.R., Sergeeva, K.D., & Gasho, E.G. (2021). Rezervy teplovoy optimizatsii ob"yektov NIU “MEI” [Reserves for thermal optimization of NRU MPEI facilities]. Vestnik MEI, 5, 11-18. https://doi.org/10.24160/1993-6982-2021-5-11-18 [In Russian]

5. Andreyeva, T.Yu., Vyalykh, K.V., Gasho, E.G., Gornov, V.N., Guzhov, S.V., Zavaleyev, I.S., Kivva, N.Yu., Kozlov, S.A., Mal'tsev, A.P., Medvedeva, I.Yu., Moskalenko, I.V., Razorenov, R.N., Romanov, G.A., Semutnikova, Ye.G., Tarasova,Ye.V., Titov, S.B., & Shiryayeva, I.A. (2021). 50 ob"yektov zelonogo stroitel'stva Moskovskogo regiona [50 green building projects in the Moscow region]. (A.O. Kulbachevsky, & E.G. Gacho, Eds). Mospriroda; MEI [In Russian].

6. Livchak, V.I. (2005). Obosnovaniye rascheta udel'nykh pokazateley raskhoda tepla na otopleniye raznoetazhnykh zhilykh zdaniy [Substantiation of the calculation of specific indicators of heat consumption for heating multi-storey residential buildings]. ABOK, 2, 36-41. https://www.abok.ru/for_spec/articles.php?nid=2782 [In Russian]

7. Malyshev, Ya.A., & Nemova, D.V. (2021). Otsenka razlichnykh variantov energoeffektivnogo ostekleniya fasadov zdaniy [Evaluation of various options for energy-efficient glazing of building facades]. In Proc. Nedelya Nauki ISI (pp. 427-429). Peter the Great St.Petersburg Polytechnic University [In Russian].

[ГОСТ Р 7.0.5–2008]

1. Влияние выбросов водяного пара от работы ТЭЦ, котельных и автотранспорта на локальные климатические изменения и климатическую адаптацию мегаполиса на примере Москвы / Е.Г. Гашо, С.В. Гужов, А.С. Белобородова, Н.В. Гукова // Надежность и Безопасность Энергетики. 2019. № 3 (12). С. 109-199.
eLIBRARY ID: https://www.elibrary.ru/item.asp?id=41342450
DOI: https://doi.org/10.24223/1999-5555-2019-12-3-190-199

2. Архив погоды в Москве [Сайт]: rp5.ru. Расписание погоды. ООО «Расписание Погоды».
URL: https://rp5.ru/Архив_погоды_в_Москве_(ВДНХ) (дата обращения 16.10.2021).

3. О состоянии окружающей среды в городе Москве в 2020 году [Электронный ресурс] / Под ред. А. О. Кульбачевского. М: Комплекс городского хозяйства города Москвы, 2021. 330 с.
URL: https://www.mos.ru/eco/documents/doklady/view/259642220/

4. Перепелица Р.Р., Сергеева К.Д., Гашо Е.Г. Резервы тепловой оптимизации объектов НИУ «МЭИ» // Вестник МЭИ. 2021. № 5. С. 11-18.
eLIBRARY ID: https://www.elibrary.ru/item.asp?id=46703701
DOI: https://doi.org/10.24160/1993-6982-2021-5-11-18

5. 50 объектов зелёного строительства Московского региона / Т.Ю. Андреева, К.В. Вялых, Е.Г. Гашо и др.; Под. ред. А.О. Кульбачевского, Е.Г. Гашо. М.: Мосприрода; МЭИ, 2021. 193 с.

6. Ливчак В.И. Обоснование расчета удельных показателей расхода тепла на отопление разноэтажных жилых зданий // АВОК. 2005. № 2. С. 36-41.
URL: https://www.abok.ru/for_spec/articles.php?nid=2782

7. Малышев Я. А., Немова Д. В. Оценка различных вариантов энергоэффективного остекления фасадов зданий // Неделя Науки ИСИ: Мат-лы всерос. конф. в 3-х ч. СПб.: ФГАОУ ВО «СпбПУ», 2021. С. 427–429.
LIBRARY ID: https://www.elibrary.ru/item.asp?id=46294721

Published

2021-12-30

How to Cite

Sergeeva К., & Perepelitsa Р. (2021). Adaptation of buildings to climate change with energy-efficient glazing. Energy Systems, 6(1), 81–89. Retrieved from https://j-es.ru/index.php/journal/article/view/2021-1-008

URN