Development of a mathematical model of a gas turbine plant with a low-emission combustion chamber and features of integration into the SimInTech environment

Authors

  • Igor Myravev Ivanovo State Power Engineering University named after V.I. Lenin
  • Danil Shinkevich Ivanovo State Power Engineering University named after V.I. Lenin

Keywords:

simulation modeling, NOx emission, combustion temperature, moisture content, calculated characteristics

Abstract

The results of the development of a mathematical model of a gas turbine plant (GTP) SGT5-4000F with an annular low-emission combustion chamber are presented. This plant has a low NOx emission and a high coefficient of performance (COP). The obtained results of mathematical modeling are integrated into the domestic environment of dynamic modeling of technical systems "SimInTech". The obtained results were verified by comparing the model values with the trends of the real technological parameters of the gas turbine unit taken from the archive of the automated process control system of the power plant. According to the results of the experimental studies carried out on the model with changes in the electrical load from 280 to 160 MW, it is shown that the model allows you to control the combustion process in the combustion chamber, depending on the composition of the fuel, evaluate the change in NOx emissions and provide an analysis of the stability of the gas turbine compressor according to surging in conditions of changing temperature and humidity of the incoming air.

Metrics

Metrics Loading ...

Author Biographies

Igor Myravev, Ivanovo State Power Engineering University named after V.I. Lenin

Cand. of Tech. Sciences, PhD, Department of Control Systems.

Danil Shinkevich, Ivanovo State Power Engineering University named after V.I. Lenin

Undergraduate

References

ГОСТ

1. Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions / Third Edition. New York: CRC Press, 2010. 557 p.

2. Тепловые испытания газотурбинной установки SGT5-4000F энергоблока ПГУ-420Т ТЭЦ-16 Мосэнерго / Б.Д. Теплов, Ю.А. Радин, А.А. Филин, Д.В. Руденко // Тепло-энергетика. 2016. №8. С. 10-17.

EDN: WDOUHD

DOI: 10.1134/S0040363616080117

3. Фаворский О.Н. Проблемы разработки технологий малоэмиссионного го-рения и создания малоэмиссионных камер сгорания в газотурбостроении // Двигатели. 2012. № 6 (84). С. 6-9. EDN: YLFHZ

4. Среда динамического моделирования технических систем SimInTech: Практикум по моделированию систем автоматического регулирования / Б.А. Карташов, Е.А. Шаба-ев, О.С. Козлов, А.М. Щекатуров. М.: ДМК Пресс, 2017. 424 с.

5. Муравьев И.К., Тверской Ю.С. Исследование математической модели эффек-тивности совместной работы газовой и паровой турбин энергоблока с ПГУ // Автома-тизация в промышленности. 2016. № 1. С. 53–57. EDN: VOILXR

6. Муравьев И.К., Коровкин А.В., Шитов Р.А. Исследование режимов работы газовой турбины ГТЭ-110 по условиям ограничения выбросов оксидов азота на парога-зовых энергоблоках // Вестник Ивановского государственного энергетического уни-верситета. 2020. № 1. С. 11–21. EDN: ZGVKVJ

DOI: 10.17588/2072-2672.2020.1.011-021

7. Буданов В.А., Григорьев Е.Ю. Проектировочный расчет камеры сгорания газовой турбины. Иваново: ИГЭУ им. В.И. Ленина, 2015. 62 с.

8. Технические решения по снижению NOx в традиционной камере сгорания ГТД НК-16СТ / А.Н. Маркушин, В.К. Меркушин, В.М. Бышин, А.В. Бакланов // Вестник Са-марского государственного аэрокосмического университета. 2009. №3 (19). С. 291-297. EDN: LADUNH

9. Коломиец П.В. Расчёт горения топлива. Тольятти: ТГУ, 2011. 38 с..

10. Газотурбинные энергетические установки: учебное пособие для вузов / С.В. Цанев, В.Д. Буров, А.С. Земцов, А.С. Осыка; под ред. С.В. Цанева. М.: Издательский дом МЭИ, 2011. 428 с.

APA

1. Lefebvre, A. H., & Ballal D. R. (2010). Gas Turbine Combustion: Alternative Fuels and Emissions. (Third Edition). CRC Press.

2. Teplov, B. D., Radin, Yu. A., Filin, A. A., & Rudenko, D. V. (2016). Thermal tests of the SGT5-4000F gas-turbine plant of the PGU-420T power-generating unit at combined heat and power plant 16 of Mosenergo. Thermal Engineering, 63(8) , 536-543.

https://doi.org/10.1134/S0040363616080117

3. Favorsky, O. N. (2012). Problemi razrabotki tehnologiy maloemissionnogo goreniya i soz-daniya maloemissionnih kamer sgoraniya v gazotyrbinostroenii [Problems of development of technologies for low-emission combustion and creation of low-emission combustion chambers in gas turbine construction]. Dvigateli, 6(84) , 6-9. [In Russian]

4. Kartashov, B. A., Shabaev, E. A., Kozlov, O. S., & Schekaturov, A. M. (2017). Sreda dinamicheskogo modelirovaniya tehnicheskih sistem SimInTech: Praktikum po modelirovaniu sistem avtomaticheskogo regylirovaniya [Environment for dynamic modeling of technical sys-tems SimInTech: Workshop on modeling automatic control systems] . DMK Press. [In Rus-sian]

5. Muravev, I. K., & Tverskoy, Yu. S. (2016). Issledovanie na matematicheskoy modeli effek-tivnosti sovmestnoi raboti gazovoi i parovoi turbin energobloka s PGY [Research on the mathe-matical model of the effectiveness of the joint operation of gas and steam turbines of a power unit with a CCGT]. Avtomatizaciya v promishlennosti, 1, 53–57. [In Russian]

6. Muravev, I. K., Korovkin, A. V., & Shitov, R. A. (2020). Issledovanie rezhimov raboti gazovoi tyrbini GTE-110 po ysloviyam ogranicheniya vibrosov oksidov azota na parogazovih energob-lokah [Investigation of the operating modes of the gas turbine GTE-110 under the conditions of limiting emissions of nitrogen oxides at steam-gas power units]. Vestnik Ivanovskogo go-sydarstvennogo energeticheskogo yniversiteta, 1, 11–21. [In Russian]

https://doi.org/10.17588/2072-2672.2020.1.011-021

7. Budanov, V. A., & Grigoriev, E. Yu. (2015). Proektirovochniy raschet kameri sgoraniya gazovoi tyrbini: ychebno-metodicheskoe posobie [Design calculation of the combustion chamber of a gas turbine: teaching aid] . Ivanovskiy gosydarstvenniy energeticheskiy yniversitet. [In Russian]

8. Markushin, A. N., Merkushin, V. K., Byshin, & V .M., Baklanov, A. V. (2009). Tehnicheskie resheniya po snizheniu NOx v tradicionnoi kamere sgoraniya GTD NK-16ST [Technical solutions for reducing NOx in the traditional combustion chamber of the gas turbine engine NK-16ST]. Vestnik Samarskogo gosydarstvennogo aerokosmichesko yniversiteta, 3(19) , 291-297. [In Russian]

9.Kolomiets, P. V. (2011). Raschet goreniya topliva [Calculation of fuel combustion] . Tollyatinskiy gosydarstvenniy yniversitet. [In Russian]

10. Tsanev, S. V., Burov, V. D., Zemtsov, A. S., & Osyka, A. S. (2011). Gazotyrbinnie energet-icheskie ystanovki: ychebnoe posobie dlya vyzov [Gas turbine power plants: textbook for univer-sities] . Izdatelskiy dom MEI. [In Russian]

Published

2022-12-20

How to Cite

Myravev И., & Shinkevich Д. (2022). Development of a mathematical model of a gas turbine plant with a low-emission combustion chamber and features of integration into the SimInTech environment. Energy Systems, 7(1), 27–36. Retrieved from https://j-es.ru/index.php/journal/article/view/2022-1-003

URN