Analysis of the maximum length of the working blades of steam turbines

Authors

  • Tatyana Bogomolova National Research University «MPEI»

Keywords:

calculation experiment, last stage, working blade, tangential profiling, loss of energy, strength

Abstract

The estimation of the most effective length of the working blade of the last stage of a powerful turbine is made in terms of obtaining its maximum efficiency and ensuring reliability in the design mode. When solving this problem, a method was used to calculate the axisymmetric steam flow in the flow part of the turbine stage as an inviscid single-phase working fluid was used, and energy losses were calculated according to the semiempirical MPEI method. The characteristics of stages with different lengths of working blades are presented and the results of their calculation on the nominal mode are given.

It is shown that the choice of the maximum length of the working blade is limited not only by its strength characteristics, but also by the growth of wave losses in the gratings due to an increase in the optimal available heat drop H0, or rather the associated increase in supersonic velocities near the meridional contours. So for a high-speed turbine To-1200-6,8/50 the maximum efficiency of the last stage is achieved with a length of 1400 mm, both when the turbine is configured with three two-flow CND, and with four.

Metrics

Metrics Loading ...

References

ГОСТ

1. Пылеугольные энергоблоки на супер- и ультрасверхкритические параметры пара / А.Г. Тумановский, А.Л. Шварц, Е.В. Сомова и др. // Теплоэнергетика. 2017. № 2. С. 3-19.

EDN: XHMNTF. DOI: 10.1134/S0040363617020084

2. Опыт промышленного применения обогрева направляющих лопаток для снижения эрозии влажно-паровых турбинных ступеней / Н.В. Аверкина, Ю.Я. Качуринер, В.Г. Орлик и др. // Электрические станции. 2004. № 2. С. 24-27.

3. Lampart P., Yershov S. Direct Constrained Computational Fluid Dynamics Based Optimization of Three-Dimensional Blading for the Exit Stage of a Large Power Steam Turbine // Transactions of the ASME. Journal Engineering for Gas Turbines and Power. 2003. V. 125, No 1. P. 385-390.

DOI: 10.1115/1.1520157

4. Torre A., Cecchi S. Latest Developments and Perspectives in the Optimised Design of LP Steam Turbines at ANSALDO // 7th European Conference on Turbomashinary Fluid Dynamics and Thermodynamics. Athens (Greece): National technical university of Athens, 2007. P. 19-40.

5. Богомолова Т.В. Расчет и проектирование последних ступеней паровых турбин. М.: Изд-во МЭИ, 2021. 84 с.

6. Богомолова Т.В., Мельников О.В. Применение ANSYS-FLUENT для прочностных расчетов рабочих лопаток последних ступеней турбин // Труды МАИ. 2013. № 66. С. 14. EDN: RDNTYX

7. Дейч М.Е. Газодинамика решеток турбомашин. М.: Энергоатомиздат. 1996. 527 с.

APA

1. Umanovskiy, A.G., Shvarts, A.L., Somova, Ye. V., Verbovetskiy, E. KH., Avrutskiy, G. D., Yermakova, S. V., Kalugin, R. N., & Lazarev, M. V. (2017). Pyleugol'nyye energobloki na super- i ul'trasverkhkritiche-skiye parametry para [Dust-coal power units for super- and ultra-supercritical steam parameters]. Thermal engineering, 2, 83-96. https://doi.org/10.1134/S0040363617020084

2. Averkina, N. V., Kachuriner, Yu. Ya., & Orlik, V. G. (2004). Opyt promyshlennogo primene-niya obogreva napravlyayushchikh lopatok dlya snizheniya erozii vlazhno-parovykh turbinnykh stupeney [Experience of industrial application of heating guide vanes to reduce erosion of wet-steam turbine stages]. Elektricheskiye stantsii, 2, 24-27. [In Russian]

3. Lampart, P., & Yershov, S. (2003). Direct Constrained Computational Fluid Dynamics Based Optimization of Three-Dimensional Blading for the Exit Stage of a Large Power Steam Turbine. Transactions of the ASME. Journal Engineering for Gas Turbines and Power, 125(1) , 385-390. http://dx.doi.org/10.1115/1.1520157

4. Torre, A., & Cecchi, S. (2007). Latest Developments and Perspectives in the Optimised Design of LP Steam Turbines at ANSALDO // In Proc. from Turbomashinary Fluid Dynamics and Thermodynamics (pp. 19-40). National technical university of Athens.

5. Bogomolova, T. V. (2021). Raschet i proyektirovaniye poslednikh stupeney parovykh turbin [Calculation and design of the last stages of steam turbines] . Izd-vo MEI. [In Russian]

6. Bogomolova, T. V., & Mel'nikov, O. V. (2013). Primeneniye ANSYS-FLUENT dlya prochnost-nykh raschetov rabochikh lopatok poslednikh stupeney turbin [Application of ANSYS-FLUENT for strength calculations of blades of the last stages of turbines]. MAI, 66, 14. [In Russian]

7. Deych, M.Ye. (1996). Gazodinamika reshetok turbomashin [Gas dynamics of lattices of turbomachines] . Energoatomizdat. [In Russian]

Published

2022-12-20

How to Cite

Bogomolova Т. (2022). Analysis of the maximum length of the working blades of steam turbines. Energy Systems, 7(2), 14–22. Retrieved from https://j-es.ru/index.php/journal/article/view/2022-2-002

URN