Development of a digital twin of the heat network in various software

Authors

  • Alexey Shishkin NRU "MPEI"
  • Polina Meshalova NRU "MPEI"
  • Yuri Yavorovsky NRU "MPEI"
  • Ekaterina Zhigulina NRU "MPEI"

Keywords:

low-temperature heating system, capillary heating system, thermal characteristics, indoor microclimate, ceiling heating system, mathematical modeling of heat exchange

Abstract

The purpose of this work is development of the heat transfer calculation method of a water low-temperature ceiling capillary heating system for heating rectangular rooms. Recently, such systems have become widespread due to their advantages over traditional heating devices: the use of a coolant with a low temperature potential, high heating speed rate of the internal air, low temperature gradient in the height of the room, absence of noticeable air masses movement and dust flows, ability to work in cooling mode. However, such systems are still incompletely studied, and constructive calculations or calculations of thermal and hydraulic modes are carried out according to formulas obtained empirically, thus, calculations do not always have high accuracy. The paper proposes a heat transfer process calculation method from the considered low-temperature heating system, which allows determination of the heat flow value with high accuracy. It`s revealed that in the considered configuration of the system location (on the ceiling), a significant proportion of heat transfer is infrared radiation, and the convective component is very small. Therefore, it was very important to accurately describe the radiant heat exchange by mathematical equations. The calculation of the radiant component of heat transfer was carried out with the theory of radiation view factors. Experimental test of the studying object was carried out to find the missing values, as well as to verify the results obtained using the proposed calculation method. The calculation results had a slight deviation from the results obtained experimentally (the error was 6 %).

Metrics

Metrics Loading ...

References

ГОСТ

1. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems / H. Lund, S. Werner, R. Wiltshire and oth. // Energy. 2014. 68. C. 1-11.

DOI: 10.1016/j.energy.2014.02.089

2. Smart energy and smart energy systems / H. Lund, P.A. Østergaard, D. Connolly, B.V. Mathiesen // Energy. 2017. 137. C. 556-565. DOI: 10.1016/j.energy.2017.05.123

3. Lauenburg P. Temperature optimization in district heating systems // Woodhead Publishing Series in Energy; Ed. R. Wiltshire. Oxford: Woodhead Publishing, 2016. C. 223-240.

DOI: 10.1016/b978-1-78242-374-4.00011-2

4. Li H., Svendsen S. Energy and exergy analysis of low temperature district heating network // Energy. 2012. № 45(1). C. 237-246. DOI: 10.1016/j.energy.2012.03.056

5. Rämä M., Sipilä K. Transition to low temperature distribution in existing systems // Energy Procedia. 2017. (116). C. 58-68. DOI: 10.1016/j.egypro.2017.05.055

6. Von der Deckenheizung bis zum Eisspeicher [Сайт]: GeoClimaDesign. URL: http://www.geoclimadesign.com/herstellerkapillarrohrsystem/ (дата обращения 01.12.2022).

7. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source / M. Zhao, Z. Gu, W. Kang et al. // Applied Energy. 2017. 185. C. 2094-2105.

DOI: 10.1016/j.apenergy.2016.02.043

8. Using a capillary mat as a shallow heat exchanger for a ground source heat pump system / A. Widiatmojo, S. Gaurav, T. Ishihara et al. // Energy and Buildings. 2020. 209. C. 109684.

DOI: 10.1016/j.enbuild.2019.109684

9. Field evaluation of performance of radiant heating/cooling ceiling panel system / R. Li, T. Yoshidomi, R. Ooka, B.W. Olesen // Energy and Buildings. 2015. 86. C. 58-65.

DOI: 10.1016/j.enbuild.2014.09.070

10. Li N., Chen Q. Study on dynamic thermal performance and optimization of hybrid systems with capillary mat cooling and displacement ventilation // International Journal of Refrigeration. 2020. 110. C. 196-207. DOI: 10.1016/j.ijrefrig.2019.10.016

11. Liu X., Shi L., Li Y. Simulation study on capillary asymmetric radiant heating system // Procedia Engineering. 2017. 205. C. 2215-2222. DOI: 10.1016/j.proeng.2017.10.051

12. Cho J., Park B., Lim T. Experimental and numerical study on the application of low-temperature radiant floor heating system with capillary tube: Thermal performance analysis // Applied Thermal Engineering. 2019. 163. C. 114360. DOI: 10.1016/j.applthermaleng.2019.114360

13. Fundamentals of Heat and Mass Transfer/ F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine // 8th Edition. N.Y.: Wiley, 2019. 992 c.

14. Howell J.R., Mengüc M.P., Daun K.J., Siegel R. Thermal Radiation Heat Transfer / 7th ed. Boca Raton; Oxon: CRC Press, 2020. 1040 p.

15. ASHRAE Handbook 2016: HVAC Systems and Equipment / Ed. M.S. Owen. Atlanta: ASHRAE, 2016. 953 c.

16. Zhang L., Liu X.H., Jiang Y. Experimental evaluation of a suspended metal ceiling radiant panel with inclined fins // Energy and Buildings. 2013. (62). C. 522-529. DOI: 10.1016/j.enbuild.2013.03.044

17. Experimental evaluation of heat transfer coefficients between radiant ceiling and room / F. Causone, S.P. Corgnati, M. Filippi, B.W. Olesen // Energy and Buildings. 2009. № 6 (41). C. 622-628.

DOI: 10.1016/j.enbuild.2009.01.004

18. Peeters L. , Beausoleil-Morrison I., Novoselac A. Internal convective heat transfer modeling: Critical review and discussion of experimentally derived correlations // Energy and Buildings. 2011. № 9 (43). C. 2227-2239. DOI: 10.1016/j.enbuild.2011.05.002

19. Awbi H. B., Hatton A. Natural convection from heated room surfaces // Energy and Buildings. 1999. № 3 (30). C. 233-244. DOI: 10.1016/s0378-7788(99)00004-3

20. Цветков Ф.Ф., Керимов Р.В., Величко В.И. Задачник по тепломассообмену: уч. пос. / 2-е изд., испр. и доп. М.: Изд. дом МЭИ, 2008. 196 с.

APA

1. Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., & Mathiesen, B. V. (2014). 4th generation district heating (4GDH). Energy, 68, 1-11. https://doi.org/10.1016/j.energy.2014.02.089

2. Lund, H., Østergaard, P. A., Connolly, D., & Mathiesen, B. V. (2017). Smart energy and smart energy systems. Energy, 137, 556-565. https://doi.org/10.1016/j.energy.2017.05.123

3. Lauenburg, P. (2016). Temperature optimization in district heating systems. In R. Wiltshire (ed.) Woodhead Publishing Series in Energy (pp. 223-240). Woodhead Publishing https://doi.org/10.1016/b978-1-78242-374-4.00011-2

4. Li, H., & Svendsen, S. (2012). Energy and exergy analysis of low temperature district heating network. Energy, 45 (1) , 237-246. https://doi.org/10.1016/j.energy.2012.03.056

5. Rämä, M., & Sipilä, K. (2017). Transition to low temperature distribution in existing systems. Energy Procedia, 116, 58-68. https://doi.org/10.1016/j.egypro.2017.05.055

6. GeoClimaDesign (n.d.). Von der Deckenheizung bis zum Eisspeicher. Retrieved December 01, 2022 form https://www.geoclimadesign.com/herstellerkapillarrohrsystem/.

7. Zhao, M., Gu, Z., Kang, W., Liu, X., Zhang, L., Jin, L., & Zhang, Q. (2017). Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source. Applied Energy, 185, 2094-2105. https://doi.org/10.1016/j.apenergy.2016.02.043

8. Widiatmojo, A., Gaurav, S., Ishihara, T., Yasukawa, K., Uchida, Y., Yoshioka, M., & Tomigashi, A. (2020). Using a capillary mat as a shallow heat exchanger for a ground source heat pump system. Energy and Buildings, 209, 109684. https://doi.org/10.1016/j.enbuild.2019.109684

9. Li, R., Yoshidomi, T., Ooka, R., & Olesen, B. W. (2015). Field evaluation of performance of radiant heating/cooling ceiling panel system. Energy and Buildings, 86, 58-65. https://doi.org/10.1016/j.enbuild.2014.09.070

10. Li, N., & Chen, Q. (2020). Study on dynamic thermal performance and optimization of hybrid systems with capillary mat cooling and displacement ventilation. International Journal of Refrigeration, 110, 196-207. https://doi.org/10.1016/j.ijrefrig.2019.10.016

11. Liu, X., Shi, L., & Li, Y. (2017). Simulation study on capillary asymmetric radiant heating system. Procedia Engineering, 205, 2215-2222. https://doi.org/10.1016/j.proeng.2017.10.051

12. Cho, J., Park, B., & Lim, T. (2019). Experimental and numerical study on the application of low-temperature radiant floor heating system with capillary tube: Thermal performance analysis. Applied Thermal Engineering, 163, 114360. https://doi.org/10.1016/j.applthermaleng.2019.114360

13. Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2019). Fundamentals of Heat and Mass Transfer (8th ed.). Wiley.

14. Howell, J. R., Mengüc, M. P., Daun, K. J., & Siegel, R. (2020). Thermal Radiation Heat Transfer (7th ed.). CRC Press.

15. Owen M.S. (Ed.). (2016). HVAC Systems and Equipment. ASHRAE.

16. Zhang, L., Liu, X., & Jiang, Y. (2013). Experimental evaluation of a suspended metal ceiling radiant panel with inclined fins. Energy and Buildings, 62, 522-529. https://doi.org/10.1016/j.enbuild.2013.03.044

17. Causone, F., Corgnati, S. P., Filippi, M., & Olesen, B. W. (2009). Experimental evaluation of heat transfer coefficients between radiant ceiling and room. Energy and Buildings, 41(6) , 622-628. https://doi.org/10.1016/j.enbuild.2009.01.004

18. Peeters, L., Beausoleil-Morrison, I., & Novoselac, A. (2011). Internal convective heat transfer modeling: Critical review and discussion of experimentally derived correlations. Energy and Buildings, 43(9) , 2227-2239. https://doi.org/10.1016/j.enbuild.2011.05.002

19. Awbi, H., & Hatton, A. (1999). Natural convection from heated room surfaces. Energy and Buildings, 30(3) , 233-244. https://doi.org/10.1016/s0378-7788(99)00004-3

20. Tsvetkov, F. F., Kerimov, R. V., & Velichko, V. I. (2008). Zadachnik po teplomassoobmenu: uchebnoye posobiye [Task book on heat and mass transfer: a textbook] . Publishing House of MPEI. [In Russian]

Published

2022-12-20

How to Cite

Shishkin А., Meshalova П., Yavorovsky Ю., & Zhigulina Е. (2022). Development of a digital twin of the heat network in various software. Energy Systems, 7(2), 29–40. Retrieved from https://j-es.ru/index.php/journal/article/view/2022-2-004

URN