Evaluation of liquid non-freezing conditions in large vessels with local heating scheme using the Ansys Fluent software

Authors

  • Leonid Iakovlev Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg
  • Ian Morozov Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg

Keywords:

natural convection in big volume, optimizing CFD-model, cold bridges, LES-model, vessels heating

Abstract

A computer simulation of an operating water storage tank, RGSn-100, with mortise electric heating elements, for specified conditions was carried out using Finite Element Analysis software ANSYS 2021 R1. The ANSYS Fluent software package was used to solve a three-dimensional numerical simulation of natural convective flows of a viscous incompressible fluid and heat exchange processes with local heating and cooling in a large volume. Several approaches were used to select optimal methods describing convective flows in a large volume most accurately with limited resources. The influence of the heating scheme and cold bridges on the heating efficiency and the risk of freezing is considered. The article provides examples of calculations and gives specific instructions for solving problems of natural convection in large volumes using software tools - models, functions, acceptable simplifications.

Metrics

Metrics Loading ...

References

ГОСТ

1. Половников В.Ю., Хабибулин А.М. Численное исследование тепловых режимов резервуаров для хранения криожидкостей в условиях реальной эксплуатации // Труды Шестой Российской национальной конференции по теплообмену М.: Изд. дом МЭИ, 2014. С. 1482-1485. EDN VDJVYV.

2. Шкапов, П. М., Артюшкин А. Ю. О допущениях при разработке математической модели термогравитационной конвекции в технологических баках большого объема с учетом брожения // Наука и Образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2015. №11. С. 592–602. EDN: VDRHQF. DOI: 10.7463/1115.0816663

3. Патент № RU (11) 175 259(13) U1 Российская Федерация, B65D 88/74 (2006.01). Резервуар с системой обогрева для хранения вязких нефтепродуктов в регионах с холодным климатом / Усов Д. Ю. : заявитель и патентообладатель Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" № 2017112158: заявл. 10.04.2017; опубл. 28.11.2017, Бюл. № 34. 7 c.

4. Шастунова, У. Ю. Тепломассообмен в системе «горячий резервуар – основание - мерзлый грунт»: Автореф. … канд. физ.-мат. наук: 01.04.14. Тюмень: Тюменский государственный университет, 2018. 21 с. URL: https://elib.utmn.ru/jspui/handle/ru-tsu/13716

5. Zuo, Q., Zhu, L., Liu, J. Research and verification on CFD natural convection model of QM400 // Annals of Nuclear Energy. 2019. Vol. 126. P. 443–451. DOI: 10.1016/j.anucene.2018.11.053

6. CFD analysis of natural convection cooling of the in-vessel components during a shutdown of the EU DEMO fusion reactor / A. Zappatore, A. Froio, G.A. Spagnuolo, R. Zanino // Fusion Engineering and Design. 2021. Vol. 165, 112252. DOI: 10.1016/j.fusengdes.2021.112252

7. Mehedi T.H., Tahzeeb R.B., Islam A.K.M.S. Numerical analysis of steady and transient natural convection in an enclosed cavity // AIP Conference Proceedings 1851. 2017. 020097.

DOI: 10.1063/1.4984726

8. Experimental Validation of a Tool for the Numerical Simulation of a Commercial Hot Water Storage Tank / L. Mongibello, N. Bianco, M.Di Somma, G. Graditi // Energy Procedia. 2017. Vol. 105, P. 4266–4273. DOI: 10.1016/j.egypro.2017.03.917

9. A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations / B. Baeten, T. Confrey, S. Pecceu and oth. // Applied Energy. 2016. vol. 172. P. 217–229. DOI: 10.1016/j.apenergy.2016.03.118

10. Fan J., Furbo S., Yue H. Development of a Hot Water Tank Simulation Program with Improved Prediction of Thermal Stratification in the Tank // Energy Procedia. 2015. vol. 70. P. 193–202.

EDN: RUKUPR. DOI: 10.1016/j.egypro.2015.02.115

11. Modern mathematical models of convection / V.K. Andreev, Yu. A. Gaponenko, O.V. Goncharova, V.V. Pukhnachev. M.: Fizmatlit, 2008. 417 p.

12. Boussinesq J. Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rec-tilignes a grande section. Paris: Gauthier-Villars et fils, 1897. 74 p. URL: http://hdl.handle.net/1908/3743

13. Ansys Fluent Tutorial Guide: Release 2021 R1. Canonsburg, PA: ANSYS, 2021. 934 c.

APA

1. Polovnikov, V. Yu., & Khabibullin, A. M. (2014). Chislennoe issledovanie teplovyh rezhimov rezervuarov dlya hraneniya kriozhidkostej v usloviyah real'noj ekspluatacii [Numerical study of thermal conditions of cryofluid storage tanks in real operation.]. In Proc. of the Sixth Russian National Conference on Heat Exchange (pp. 1482-1485). Publishing House of MEI. [In Russian]

2. Shkapov, P. M., & Artyushkin A. Y. (2015) O dopushcheniyakh pri razrabotke matematicheskoy modeli termogravitatsionnoy konvektsii v tekhnologicheskikh bakakh bolshogo obyema s uchetom brozheniya [On assumptions in the development of a mathematical model of thermogravitational convection in large-volume process tanks, taking into account fermentation.]. Science and Education. Bauman Moscow State Technical University, 11, 592-602 https://doi.org/10.7463/1115.0816663 [In Russian]

3. Usov, D. Yu. (2017). Patent RU (11) 175 259(13) U1. Rezervuar s sistemoy obogreva dlya khraneniya vyazkikh nefteproduktov v regionakh s kholodnym klimatom [Tank with heating system for storage of viscous petroleum products in regions with cold climate] . FIPS.

4. Shastunova, U. Yu. (2019) Teplomassoobmen v sisteme «goryachiy rezervuar – osnovaniye - merzlyy grunt» [Heat and mass transfer in the system «hot tank – base - frozen ground»]. [Cand. of Tech. Sciences (PhD) , University of Tyumen]. UTMN. https://elib.utmn.ru/jspui/handle/ru-tsu/13716

5. Zuo, Q., Zhu, L., & Liu, J. (2019). Research and verification on CFD natural convection model of QM400. Annals of Nuclear Energy, 126, 443-451. https://doi.org/10.1016/j.anucene.2018.11.053

6. Zappatore, A., Froio, A., Spagnuolo, G. A., & Zanino, R. (2021). CFD analysis of natural convection cooling of the in-vessel components during a shutdown of the EU DEMO fusion reactor. Fusion Engineering and Design, 165, 112252. https://doi.org/10.1016/j.fusengdes.2021.112252

7. Mehedi, T. H., Tahzeeb, R. B., & Islam, A. K. M. S. (2017). Numerical analysis of steady and transient natural convection in an enclosed cavity. AIP Conference Proceedings 1851, 020097. https://doi.org/10.1063/1.4984726

8. Mongibello, L., Bianco, N., Somma, M. Di, & Graditi, G. (2017). Experimental Validation of a Tool for the Numerical Simulation of a Commercial Hot Water Storage Tank. Energy Procedia, 105, 4266–4273. https://doi.org/10.1016/j.egypro.2017.03.917

9. Baeten, B., Confrey, T., Pecceu S., Rogiers, F., & Helsen, L. (2016). A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations. Applied Energy, 172, 217–229. https://doi.org/10.1016/j.apenergy.2016.03.118

10. Fan, J., Furbo, S., & Yue, H. (2015) Development of a Hot Water Tank Simulation Program with Improved Prediction of Thermal Stratification in the Tank. Energy Procedia, 70, 193–202. https://doi.org/10.1016/j.egypro.2015.02.115

11. Andreev, V. K., Gaponenko, Yu. A, Goncharova, O. V., & Pukhnachev, V. V. (2008). Modern mathematical models of convection. Fizmatlit.

12. Boussinesq J. (1897). Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rec-tilignes a grande section. Gauthier-Villars et fils. http://hdl.handle.net/1908/3743.

13. ANSYS, Inc. (2021). Ansys Fluent Tutorial Guide: : Release 2021 R1. ANSYS.

Published

2022-12-20

How to Cite

Iakovlev Л., & Morozov Я. (2022). Evaluation of liquid non-freezing conditions in large vessels with local heating scheme using the Ansys Fluent software. Energy Systems, 7(4), 18–28. Retrieved from https://j-es.ru/index.php/journal/article/view/2022-4-002

URN