The effect of powering the network payload with excess energy recovery during charging of a stationary storage device

Authors

  • Aleksander Katsay Kinemak LLC
  • Alexander Bizyaev Kinemak LLC
  • Vladimir Kozarevich Kinemak LLC

Keywords:

contact network, urban electric transport, traction and non-traction load, regenerative braking, excessive recovery, energy storage NKE-3G, storage charging, KBK effect

Abstract

The article reflects the results of statistical and field studies of the modes of energy consumption for traction and non-traction load in the CS of ground-based mountain electric transport during the operation of the stationary buffer energy storage NKE-3G. It is shown that the volumes of useful and excessive recovery of braking cars depend on the availability and capacity of the load in the CS. A stationary energy storage device can operate as a controlled load and a peak generator and allows you to increase the useful use of recovery energy by reducing the volume of excess recovery. It has been established that the stationary storage device returns the excess recovery energy for reuse not only when it issues a previously stored part of it, but also during charging by replacing the traction substation as a power source of a useful network non-traction load to the part of excess recovery redirected from the brake resistors of the recuperating car to the contact network. The last effect of saving network energy consumption was discovered for the first time and was called the "KBK effect". The volume of this substitution is comparable to the volume issued by a stationary energy storage device. On-board drives do not allow to implement the "KBK effect".

Metrics

Metrics Loading ...

References

ГОСТ

1. Шаряков В.А. Двадцать лет внедрения асинхронного электропривода на городском электротранспорте // Control Engineering Россия. 2014. № 3. С. 69-71.

2. Пат. РФ RU 205077 U1, Рос. Федерация. Тяговая подстанция постоянного тока с системой накопления электроэнергии / В. Л. Незевак, С. С. Самолинов; заявитель Федеральное гос. бюджетное образовательное учреждение выс. Обр-я "Омский гос. Ун-т путей сооб-я". № 2021102134: заявл. 29.01.2021: опубл. 25.06.2021. EDN: XVVGEN

3. Кацай А.В., Шевлюгин М.В. Активная загрузка и полезная утилизация рекуперативной энергии бортовых и стационарных накопителей в Горэлектротранспорте // Известия Тульского гос. ун-та. Технические науки. 2022. № 7. С. 476-487. EDN: GQMFOR

4. Сулим А.А. Расчет электроэнергии рекуперации электрифицированного городского транспорта при установке накопителя на тяговой подстанции // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2014. №. 4. С. 30-41. EDN: STHDQB

5. Возможности рационального использования энергии торможения электрического подвижного состава / В.А. Шаряков, О.Л. Шарякова, А.В. Агунов, А.В. Третьяков // Электротехника. 2018. № 10. С. 55-59. EDN: MAGDHV

6. Bartłomiejczyk M, Połom M. Multiaspect measurement analysis of breaking energy recovery. Energy Conversion and Management. 2016. Vol. 127. P. 35-42. DOI: 10.1016/j.enconman.2016.08.089

7. Khodaparastan M., Mohamed A. Flywheel vs. Supercapacitor as Wayside Energy Storage for Electric Rail Transit Systems. Inventions. 2019. № 44(4). P 62.

DOI: https://doi.org/10.3390/inventions4040062

8. Показатели работы стационарного накопителя энергии на тяговых подстанциях московского метрополитена / Л.А. Баранов, В.А. Гречишников, А.В. Ершов и др. // Электротехника. 2014. № 8. С. 18-22. EDN: SGHUSZ

9. Мазнев А.С., Степанская О.А., Шатнев О.И. Системы рекуперации энергии торможения электроподвижного состава на городском транспорте Санкт-Петербурга // Известия ПГУПС. 2017. Том 14, № 1. С. 63-72. EDN: YNBXVH

10. Щуров Н.И., Щеглов К.В., Штанг А.А. Применение накопителей энергии в системах электрической тяги // Сборник научных трудов НГТУ. 2008. № 1(51). С. 99-104. EDN: YGHVVP

11. ГОСТ 6962-75. Транспорт, электрифицированный с питанием от контактной сети. Ряд напряжений. Государственный стандарт СССР. 1975. 8 c.

12. Чернигов В.М. Электрооборудование трамвайного вагона с емкостным накопителем. [Электронный ресурс]. URL: http://mapget.ru/wp-content/uploads/2021/12/MAPGET_NTS_ Chergos.pdf (дата обращения 22.07.2022)

13. «Зеленые» технологии: в Россию возвращается рекуперация энергии. [Сайт]: TechInsider. URL: https://www.techinsider.ru/technologies/1533963-zelenye-tehnologii-v-rossiyu-vozvrashchaetsya-rekuperaciya-energii/ (дата обращения 12.10.2022 г.).

APA

1. Sharyakov, V. A. (2016). Dvadtsat' let vnedreniya asinkhronnogo elektroprivoda na gorodskom elektro-transporte [Twenty years of introduction of asynchronous electric drive in urban electric transport]. Control Engineering Rossiya, 3, 69-71. [In Russian]

2. Nezevak, V. L., & Samolinov, S. S. (2021). Patent RF RU 205077 U1 Tyagovaya podstantsiya postoyannogo toka s sistemoy nakopleniya elektroenergii [DC Traction Substation with Energy Storage System] . [In Russian]

3. Katsay, A. V., & Shevlyugin, M. V. (2022). Aktivnaya zagruzka i poleznaya utilizatsiya rekuperativnoy energii bortovykh i statsionar-nykh nakopiteley v Gorelektrotransporte [Active loading and useful utilization of regenerative energy of on-board and stationary storage devices in Gorelektrotransport]. Izvestiya Tul'skogo gos. un-ta. Tekhnicheskiye nauki, 7, 476-487. [In Russian]

4. Sulim, A. A. (2014). Raschet elektroenergii rekuperatsii elektrifitsirovannogo gorodskogo trans-porta pri ustanovke nakopitelya na tyagovoy podstantsii [Calculation of electricity recovery of electrified urban transport when installing a drive at a traction substation]. Izvestiya vysshikh uchebnykh zavedeniy i energ-kikh ob"yedineniy SNG. Energetika, 4(4) , 30–41. [In Russian]

5. Sharyakov, V. A., Sharyakova O.L., Agunov A.V., Tret'yakov A.V. (2018) Vozmozhnosti ratsional'nogo ispol'zovaniya energii tormozheniya elektricheskogo podvizhnogo sostava [Opportunities for rational use of braking energy of electric rolling stock]. Elektrotekhnika, 10, 55-59. [In Russian]

6. Bartłomiejczyk, M, & Połom, M. (2016). Multiaspect measurement analysis of breaking energy recovery. Energy Conversion and Management 127, 35-42.

7. Khodaparastan, M., & Mohamed, A. (2019). Flywheel vs. Supercapacitor as Wayside Energy Storage for Electric Rail Transit Systems. Inventions, 44(4) 62. https://doi.org/10.3390/inventions4040062

8. Baranov, L. A., Grechishnikov, V. A., Yershov, A. V., Rodionov, M. D., & Shevlyugin, M. V. (2014). Pokazateli raboty statsionarnogo nakopitelya energii na tyagovykh podstantsiyakh moskovskogo metropolitena [Performance indicators of stationary energy storage at traction substations of the Moscow metro]. Elektrotekhnika, 8, 18-22. [In Russian]

9. Maznev, A. S., Stepanskaya, O. A., & Shatnev, O. I. (2017). Sistemy rekuperatsii energii tormozheniya elek-tropodvizhnogo sostava na gorodskom transporte Sankt-Peterburga [Braking energy recovery systems for electric rolling stock in public transport in St. Petersburg]. Izvestiya PGUPS, 1, 63-72. [In Russian]

10. Shchurov, N. I., Shcheglov, K. V., & Shtang, A. A. (2008). Primeneniye nakopiteley energii v sistemakh elektri-cheskoy tyagi [The use of energy storage devices in electric traction systems]. Sbornik nauchnykh trudov NGTU, 1 (51) , 99-104. [In Russian]

11. GOST 6962-75. (1975). Transport elektrifitsirovannyy s pitaniyem ot kontaktnoy seti. Ryad napryazheniy. [Transport, electrified, powered by a contact network. Voltage range] . State standard of the union of the USSR. [In Russian]

12. Chernigov, V. M. (2021). Elektrooborudovaniye tramvaynogo vagona s yemkostnym nakopitelem. [Electrical equipment of a tram car with a capacitive storage] . Retrieved July 22, 2022 from http://mapget.ru/wp-content/uploads/2021/12/MAPGET_NTS_Chergos.pdf. [In Russian]

13. TechInsider (n.d.) «Zelenyye» tekhnologii: v Rossiyu vozvrashchayetsya rekuperatsiya energii. ["Green" technologies: energy recovery returns to Russia] . Retrieved November 12, 2022 from https://www.techinsider.ru/technologies/1533963-zelenye-tehnologii-v-rossiyu-vozvrashchaetsya-rekuperaciya-energii/ [In Russian]

Published

2022-12-20

How to Cite

Katsay А., Bizyaev А., & Kozarevich В. (2022). The effect of powering the network payload with excess energy recovery during charging of a stationary storage device. Energy Systems, 7(4), 80–86. Retrieved from https://j-es.ru/index.php/journal/article/view/2022-4-008

URN