Verification of the hypothesis of the possibility of measuring liquid pressure through a pipeline wall. Results of the study

Authors

  • Mikhail Kobylkin Transbaikal state university
  • Yuliya Rikker Transbaikal state university
  • Ilya Akimov Transbaikal state university

Keywords:

pressure, measurement, pipeline, energy saving, ecology, energy efficiency

Abstract

Pressure is a key parameter in the work of many industrial enterprises, including those in the energy sector. Control and monitoring of this parameter ensures a stable and trouble-free flow of technological processes carried out in the course of the activities of these enterprises. Today, there is a problem that if there is no pressure gauge on the pipe, it is impossible to determine the current pressure inside the pipeline without inserting a pressure gauge into the body of this pipeline, which is possible only during the period of maintenance and commissioning or due to the implementation rather dangerous event, called "Push under pressure."  The need to create the possibility of prompt and timely control of pressure inside the pipelines of industrial enterprises is an urgent task for engineers and specialists in the field of energy. The purpose of the work: to test the hypothesis of the possibility of measuring the pressure of a liquid through the pipeline wall, based on the nature of the flow of dynamic thermal processes, to create an experimental prototype of a device that allows determining the final value of the pressure of the working fluid inside the pipeline. Results of the work: the relationship between the nature of the flow of thermal processes and the final value of pressure inside the pipeline has been established. A prototype of the device was developed and created, as well as an approbation stand, which made it possible to test the hypothesis.

Metrics

Metrics Loading ...

References

ГОСТ

1. Акимов И.С. Влияние экспериментальных технологий измерения давления на производство и перспективы энергосбережения // Научный вектор в АТР: Мат-лы межд. научн.-практ. конф. мол. уч. Чита: ЗабГУ, 2022. С. 7-11.

EDN: NMDSKR.

2. Кожаева К.В., Шарнина Г.С. Врезки и перекрытия: повышение надежности работ на магистральных трубопроводах под давлением // Деловой журнал Neftegaz.RU. 2021. № 3 (111). С. 94-98. URL: https://magazine.neftegaz.ru/articles/transportirovka/672078-vrezki-i-perekrytiya-povyshenie-nadezhnosti-rabot-na-magistralnykh-truboprovodakh-pod-davleniem/

3. Артемова Д.В. Исследование негерметичности протяженной вакуумной магистрали по показаниям манометрических датчиков // Молодежный научно-технический вестник. 2013. № 3. С. 14.

EDN: QOSBOB.

4. Патент 2470274 РФ, МПК G01L11/00. Способ и устройство для измерения давления внутри трубопроводов / Балакин Р. А., Тимец В. М. (РФ). – 2011132209/28, заявл. 29.07.2011; опубл. 20.17.2012, Бюл. № 35. URL: https://www1.fips.ru/registers-doc-view/fips_servlet?DB= RUPAT&DocNumber=2470274

5. Патент 2098782 РФ, МПК G01L9/04. Способ измерения давления в действующем трубопроводе / Горская В.Я., Самойлов Б.В., Бусыгин Г.Н., Некрасова А.П. (РФ). – 96118163/28, заявл. 10.09.1996; опубл. 10.12.1997. URL: https://www1.fips.ru/registers-doc-view/fips_servlet? DB=RUPAT&DocNumber=2098782

6. Measurement of fuild pressure thoughtthe pipeline wall in heat and power processes / M. Kobylkin, Y. Rikker, A. Batukhtin, I. Akimov // IOP Conference Series: Earth and Environmental Science. 2022. Vol. 070(1). P. 012041.

DOI: 10.1088/1755-1315/1070/1/012041.

7. Кобылкин М.В., Риккер Ю.О., Акимов И.С. Измерение давления жидкости через стенку трубопровода // Кулагинские чтения: техника и технологии производственных процессов: Мат-лы XXII Межд. научн.-практ. конф. В 2-х ч. Ч. 1. Чита: ЗабГУ, 2022. С. 208-216. EDN: YLOYXM.

8. Первичные стендовые испытания прибора для измерения давления / М.В. Кобылкин, И.С. Акимов, Ю.О. Риккер, З.Г. Дарбинян // Кулагинские чтения: техника и технологии производственных процессов: Мат-лы XXII Межд. научн.-практ. конф. В 2-х ч. Ч. 1. Чита: ЗабГУ, 2022. С. 216-221.

EDN: BZVJCI.

9. Water Pressure Measurement Inside a Hydrocarbon Column / T. Rolfsvåg, C. Lindsay, J. Zutta et al // SPE Norway One Day Seminar. Bergen (Norway): Society of Petroleum Engineers, 2019. P. SPE-195639-MS.

DOI: 10.2118/195639-MS.

10. High-Precision Large-Range Optical Fiber Interferometric Piezometer and Its Wideband Interferometry for Water Pressure Measurement / S. Wang, Y. Yang, J. Cao, L. Zhang // IEEE Transactions on Instrumentation and Measurement. 2022. Vol. 71. P. 7001613.

DOI: 10.1109/TIM.2021.3139699.

11. Improving Water Pressure Measurement Using Temperature-Compensated Wireless Passive SAW Bidirectional RDL Pressure Sensor / Z. Tang, W. Wu, J. Gao, P, Yang et al // IEEE Transactions on Instrumentation and Measurement. 2021. Vol. 71. P. 9505111.

DOI: 10.1109/TIM.2021.3120146.

12. Как оценить статистическую значимость [Сайт]: wikiHow. URL: https://ru.wikihow.com/оценить-статистическую-значимость (дата обращения: 16.06.2023).

13. Методика анализа фактического технического состояния скважинного насосного оборудования / В.B. Ивашечкин, В.И. Крицкая, В.Н. Ануфриев, О.А. Аврутин // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2021. Т. 64, № 3. С. 275-286.

EDN: ZODDKF.

DOI: 10.21122/1029-7448-2021-64-3-275-286.

14. Лазичев А.А., Самулеева Ю.А. Система автоматизированной настройки манометров с помощью нанесения шкал // Мехатроника, автоматизация, управление. 2008. № 8. С. 35-38.

EDN: JTIDUZ.

15. Кораблев В.А., Макаров Д.С. Электронный манометр для исследования теплогидравлических процессов при пониженных давлениях // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. 2006. № 31. С. 94-96.

EDN: JUFLDV.

APA

1. Akimov, I. S. (2022). Vliyanie eksperimental'nyh tekhnologij izmereniya davleniya na proizvodstvo i perspektivy energosberezheniya [Impact of experimental pressure measurement technologies on production and energy saving prospects]. In Proc. of the International Sc. and Prac. Conf “Scientific vector in the Asia-Pacific region” (pp. 7-11). ZabGU. https://www.elibrary.ru/nmdskr [In Russian]

2. Kozhaeva, K. V., & SHarnina, G. S. (2021). Vrezki i perekrytiya: povyshenie nadezhnosti rabot na magistral'nyh truboprovodov pod davleniem [Taps and overlaps: improving the reliability of work on main pipelines under pressure]. Delovoj zhurnal Neftegaz.RU, 3 (111) , 94-98. https://magazine.neftegaz.ru/articles/transportirovka/672078-vrezki-i-perekrytiya-povyshenie-nadezhnosti-rabot-na-magistralnykh-truboprovodakh-pod-davleniem/ [In Russian]

3. Artemova, D. V. (2013). Issledovanie negermetichnosti protyazhennoj vakuumnoj magistrali po pokazaniyam manometricheskih datchikov [Investigation of leaks in an extended vacuum line according to the readings of manometric sensors]. Molodezhnyj nauchno-tekhnicheskij vestnik, 3, 14. https://www.elibrary.ru/qosbob [In Russian]

4. Balakin, R. A., & Timec, V. M. (2012). Patent RU 2470274, Sposob i ustrojstvo dlya izmereniya davleniya vnutri truboprovodov [Method and device for measuring pressure inside pipelines] . https://www1.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2470274. [In Russian]

5. Gorskaya, V. YA., Samojlov, B. V., Busygin, G. N., & Nekrasova, A. P. (1997) Patent RU 2098782, Sposob izmereniya davleniya v dejstvuyushchem truboprovode [Method for measuring pressure in an operating pipeline] . https://www1.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT& DocNumber=2098782. [In Russian]

6. Kobylkin. M. V., Rikker, Yu. O., Batukhtin, A. G., & Akimov, I. S. (2022). Measurement of fuild pressure thoughtthe pipeline wall in heat and power processes. IOP Conference Series: Earth and Environmental Science, 070(1) , 012041. https://doi.org/10.1088/1755-1315/1070/1/012041

7. Kobylkin. M. V., Rikker, Yu. O., & Akimov, I.S. (2022). Izmerenie davleniya zhidkosti cherez stenku truboprovoda [Liquid pressure measurement through the pipe wall]. In Proc. of the 22st International Sc. and Prac.Conf. “Kulagin Readings: Technique and Technology of Production Processes” (Vol. 1, pp. 208-216). ZabGU. https://www.elibrary.ru/yloyxm. [In Russian]

8. Kobylkin. M. V., Akimov, I. S., Rikker, Yu. O., & Darbinyan, Z. G. (2022). Pervichnye stendovye ispytaniya pribora dlya izmereniya davleniya [Primary bench tests of a pressure measuring device]. In Proc. of the 22st International Sc. and Prac.Conf. “Kulagin Readings: Technique and Technology of Production Processes” (Vol. 1, pp. 216-221). ZabGU. https://www.elibrary.ru/bzvjci [In Russian]

9. Rolfsvag, T. A., Lindsay, C., Zuta, J., Vatne, K. O., Lohne, A., Iversen, J. A., Guo, Y., Askarinezhad, R., Undheim, E., Gudmestad, T. & Bye, A (2019). Water Pressure Measurement Inside a Hydrocarbon Column: Proc. of the SPE Norway One Day Seminar: Society of Petroleum Engineers. SPE-195639-MS. https://doi.org/10.2118/195639-MS.

10. Wang, S., Yang, Y., Cao, J., & Zhang, L. (2022). High-Precision Large-Range Optical Fiber Interferometric Piezometer and Its Wideband Interferometry for Water Pressure Measurement. IEEE Transactions on Instrumentation and Measurement, 71, 7001613. http://dx.doi.org/10.1109/TIM.2021.3139699

11. Tang, Z., Wu, W., Gao, J., Yang, P., Hussain, A., Luo, J., Tao, R., Fu, C.,& Li, T. (2021). Improving Water Pressure Measurement Using Temperature-Compensated Wireless Passive SAW Bidirectional RDL Pressure Sensor, IEEE Transactions on Instrumentation and Measurement, 71, 9505111. http://dx.doi.org/10.1109/TIM.2021.3120146.

12. Ruff B. (2023, February 6). How to Assess Statistical Significance. WikiHow's. https://www.wikihow.com/Assess-Statistical-Significance.

13. Ivashechkin, V. B., Kritskaia, V. I., Anufriev, V. N., & Avrutin, O. A. (2021). Metodika analiza fakticheskogo tekhnicheskogo sostoyaniya skvazhinnogo nasosnogo oborudovaniya [Methodology for analyzing the actual technical condition of downhole pumping equipment]. Energetika. Izvestiya vysshih uchebnyh zavedenij i energeticheskih ob"edinenij SNG, 64(3) , 275-286. https://doi.org/10.21122/1029-7448-2021-64-3-275-286 [In Russian]

14. Lazichev, A. A., & Samuleeva, Yu. A. (2008). Sistema avtomatizirovannoj nastrojki manometrov s pomoshch'yu naneseniya shkal [System for automated setting of pressure gauges using application]. Mekhatronika, avtomatizaciya, upravlenie, 17, 35-38. https://www.elibrary.ru/jtiduz [In Russian]

15. Korablev, V. A., & Makarov, D. S. (2006). Elektronnyj manometr dlya issledovaniya teplogidravlicheskih processov pri ponizhennyh davleniyah [Electronic manometer for studying thermal-hydraulic processes at low pressures]. Nauchno-tekhnicheskij vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta informacionnyh tekhnologij, mekhaniki i optiki, 31, 94-96. https://www.elibrary.ru/jufldv [In Russian]

Published

2023-06-30

How to Cite

Kobylkin М. ., Rikker Ю. ., & Akimov И. . (2023). Verification of the hypothesis of the possibility of measuring liquid pressure through a pipeline wall. Results of the study. Energy Systems, 8(1), 63–71. Retrieved from https://j-es.ru/index.php/journal/article/view/2023-1-005

URN