Thermochemical heat recovery in a gas turbine plant

Authors

  • Mikhail National Research University "Moscow Power Engineering Institute"
  • Stanislav Popov National Research University "Moscow Power Engineering Institute"

Keywords:

natural gas, fuel use, efficiency improvement, thermal recovery, mathematical model, conversion reactor, 3D-model

Abstract

Natural gas every year wins an increasing share in the global fuel balance. Countries where cheap natural gas is available are seeking to increase the efficiency of its use in order to increase the volume of its use. One of the most promising methods for increasing the efficiency of natural gas is the heat recovery of gas waste. The subject of the study is a gas turbine plant due to the fact that the number of power plants with gas turbines tends to increase. In this paper, options for increasing the efficiency of using natural gas in gas turbines at a constant flow rate are investigated. Variants of implementation of thermochemical heat recovery of gas wastes based on steam reforming of methane and thermal heat recovery of gas wastes based on steam generation are considered. The results of a study based on a mathematical model of a gas turbine plant using thermal and thermochemical waste gas heat recovery are presented.

A constructive calculation of the methane steam reforming reactor has been carried out. The design and regime parameters of the heat exchanger are determined. A 3D-model of the conversion reactor has been developed, which provides high gas density and the possibility of thermal elongation of heat exchange tubes.

Metrics

Metrics Loading ...

References

ГОСТ

1. Смена парадигмы на мировом энергетическом рынке / В.В. Бессель, В.Г. Кучеров, А.С. Лопатин, В.Г. Мартынов // Газовая промышленность. 2017. № 4 (751). С. 28–33. EDN: YKMINH .

2. Дзюба А.П. Роль сжиженного природного газа в мировом энергетическом балансе // Инновационная экономика. 2021. № 1. С. 59–74.

EDN: LPLYXQ.

3. Носач В.Г., Шрайбер А.А. Повышение экономичности и экологических характеристик газотурбинных установок за счет термохимической регенерации // Промышленная теплотехника. 2011. Т. 33. № 1. С. 46¬–50. URL: http://dspace.nbuv.gov.ua/handle/123456789/60300

4. Носач В.Г. Энергия топлива. Киев: Наукова думка, 1989. 148 с.

5. Носач В.Г., Шрайбер А.А. Повышение эффективности использования биогаза в теплоэнергетических установках с помощью термохимической регенерации // Промышленная теплотехника. ¬ 2009. ¬Т. 31. № 2. С. 57–¬63.

6. Transient performances of the gas turbine recuperating waste heat through hydrogen rich fuels / F. Pan, X. Cheng, X. Wu and oth. // International Journal of Hydrogen Energy. 2019. Vol. 44, № 56. P. 29743–29751.

DOI: 10.1016/j.ijhydene.2019.02.099.

7. Галин А.К. Оценка состояния рынка газотурбинных установок // Инновации. Наука. Образование. 2021. № 36. С. 1307–1311.

8. Cappelletti A., Martelli F. Investigation of a pure hydrogen fueled gas turbine burner // International Journal of Hydrogen Energy. 2017. Vol. 42, № 15. P. 10513–10523. https://doi.org/10.1016/j.ijhydene.2017.02.104.

9. OH*-chemiluminescence during autoignition of hydrogen with air in a pressurised turbulent flow reactor / A. Schönborn, P. Sayad, A.A. Konnov, J. Klingmann // International Journal of Hydrogen Energy. 2014. Vol. 39, № 23. P. 12166–12181. https://doi.org/10.1016/j.ijhydene.2014.05.157.

10. Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors / A. Valera-Medina, D.G. Pugh, P. Marsh and oth. // International Journal of Hydrogen Energy. 2017. Vol. 42, № 38. P. 24495–24503. https://doi.org/10.1016/j.ijhydene.2017.08.028.

11. Носач В.Г., Шрайбер А.А. Повышение эффективности использования природного газа в теплоэнергетике с помощью термохимической регенерации // Промышленная теплотехника. ¬2009.¬ Т. 31. № 3. С. 42–¬50. URL: http://dspace.nbuv.gov.ua/handle/123456789/60782.

12. Носач В.Г., Шрайбер А.А. Повышение эффективности газотурбинных установок за счет совместного использования термохимической и паровой регенерации // Промышленная теплотехника. 2011. Т. 33. № 2. С. 46–¬49. URL: http://dspace.nbuv.gov.ua/handle/ 123456789/60317.

13. Pashchenko D. Energy optimization analysis of a thermochemical exhaust gas recuperation system of a gas turbine unit // Energy Conversion and Management. 2018. Vol. 171. P. 917–924. DOI: 10.1016/j.enconman.2018.06.057.

14. Pashchenko D. Performance evaluation of a combined power generation system integrated with thermochemical exhaust heat recuperation based on steam methane reforming //International Journal of Hydrogen Energy. 2023. Т. 48. №. 15. С. 5823-5835. DOI: 10.1016/j.ijhydene.2022. 11.186.

15. Verkhivker G., Kravchenko V. The use of chemical recuperation of heat in a power plant // Energy. 2004. Vol. 29. P. 379–388. DOI: 10.1016/j.energy.2003.10.010.

16. Свистунов И.Н. Повышение энергетической эффективности плавильных и нагревательных установок на основе конверсии природного газа: Автореферат дис. … канд. техн. наук: 05.14.04. М., 2017. 20 с.

17. Поляков М.В., Попов С.К. Повышение эффективности использования природного газа в газотурбинных установках посредством термохимической рекуперации // Промышленная энергетика. 2023. № 2. С. 23–31. EDN: JGCSDO. DOI: 10.34831/EP.2023.44.76.004.

18. Olmsted J.H., Grimes P.G. Heat engine efficiency enhancement through chemical recovery of waste heat // 7th Intersociety Energy Conversion Engineering Conference. San Diego: ACS, 1972. P. 241–248.

19. Тебеньков Б.П. Рекуператоры для промышленных печей. М.: Металлургия, 1975. 296 с.

20. Тепловой расчёт котельных агрегатов. Нормативный метод / Под ред. Н. В. Кузнецова и др. М.: Энергия, 1973. 295 с.

21. Бажан П.И., Каневец Г.Е., Селиверстов В.М. Справочник по теплообменным аппаратам. М.: Машиностроение, 1989. 368 с.

22. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. Учебник для вузов. Изд. 3-е перераб. и доп. М.: Энергия. 1975. 488 с.

23. Расчет кожухотрубных теплообменных аппаратов: Учеб. пособие / А.Б. Гаряев, Е.П. Валуева, А.Ю. Маскинская, О.Е. Прун. М.: Изд-во МЭИ, 2019. 84 с.

24. Мочан С.И. Аэродинамический расчет котельных установок (нормативный метод). М.: Энергия, 1977. 256 с.

APA

1. Bessel, V. V., Kucherov, V. G., Lopatin, A. S., & Martynov, V. G. (2017). Smena paradigmy na mirovom energeticheskom rynke [A paradigm shift in the global energy market]. Gazovaya promyshlennost, 4(751) , 28¬–33. [In Russian]

2. Dzyuba, A. P. (2021). Rol szhizhennogo prirodnogo gaza v mirovom energeticheskom balance [The role of liquefied natural gas in the global energy balance]. Innovacionnaya ekonomika, 1, 59–74. [In Russian]

3. Nosach, V. G., & Shrajber, A. A. (2011). Povyshenie ekonomichnosti i ekologicheskih harakteristik gazoturbinnyh ustanovok za schet termohimicheskoj regeneracii [Improving the efficiency and environmental performance of gas turbine plants due to thermochemical regeneration]. Promyshlennaya teplotekhnika, 33(1) , 46¬–50. [In Russian]

4. Nosach, V. G. (1989). Energiya topliva [Fuel energy] . Izd-vo Naukova dumka. [In Russian]

5. Nosach, V. G., & Shrajber, A. A. (2009). Povyshenie effektivnosti ispolzovaniya biogaza v teploenergeticheskih ustanovkah s pomoshchyu termohimicheskoj regeneracii [Increasing the efficiency of biogas use in thermal power plants using thermochemical regeneration]. Promyshlennaya teplotekhnika, 31(2) , 57¬–63. [In Russian]

6. Pan, F., Cheng, X., Wu, X., Wang, X., & Luo, P. (2019). Transient performances of the gas turbine recuperating waste heat through hydrogen rich fuels. International Journal of Hydrogen Energy, 44(56) , 29743-29751. DOI: 10.1016/j.ijhydene.2019.02.099.

7. Galin, A. K. (2021). Ocenka sostoyaniya rynka gazoturbinnyh ustanovok [Assessment of the state of the gas turbine market]. Innovacii. Nauka. Obrazovanie, 36, 1307–1311. [In Russian]

8. Cappelletti, A., & Martelli, F. (2017). Investigation of a pure hydrogen fueled gas turbine burner. International Journal of Hydrogen Energy, 42(15) , 10513¬–10523. https://doi.org/10.1016/j.ijhydene.2017.02.104.

9. Schönborn, A., Sayad, P., Konnov, A. A., & Klingmann, J. (2014). OH*-chemiluminescence during autoignition of hydrogen with air in a pressurised turbulent flow reactor. International journal of hydrogen energy, 39(23) , 12166-12181. https://doi.org/10.1016/j.ijhydene.2014.05.157.

10. Valera-Medina, A., Pugh, D. G., Marsh, P., Bulat, G., & Bowen, P. (2017). Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors. International Journal of Hydrogen Energy, 42(38) , 24495¬–24503. https://doi.org/10.1016/j.ijhydene. 2017.08.028.

11. Nosach, V. G., & Shrajber, A. A. (2009). Povyshenie effektivnosti ispolzovaniya prirodnogo gaza v teploenergetike s pomoshchyu termohimicheskoj regeneracii [Increasing the Efficiency of Using Natural Gas in the Heat and Power Industry Using Thermochemical Regeneration]. Promyshlennaya teplotekhnika, 31(3) , 42¬–50. http://dspace.nbuv.gov.ua/handle/123456789/60782. [In Russian]

12. Nosach, V. G., & Shrajber, A. A. (2011). Povyshenie effektivnosti gazoturbinnyh ustanovok za schet sovmestnogo ispolzovaniya termohimicheskoj i parovoj regeneracii [Improving the efficiency of gas turbine plants through the combined use of thermochemical and steam regeneration]. Promyshlennaya teplotekhnika, 33(2) , 46¬–49. http://dspace.nbuv.gov.ua/handle/123456789/ 60317. [In Russian]

13. Pashchenko, D. (2018). Energy optimization analysis of a thermochemical exhaust gas recuperation system of a gas turbine unit. Energy Conversion and Management, 171, 917-–924. http://dx.doi.org/10.1016/j.enconman.2018.06.057

14. Pashchenko, D. (2023). Performance evaluation of a combined power generation system integrated with thermochemical exhaust heat recuperation based on steam methane reforming. International Journal of Hydrogen Energy, 48(15) , 5823¬–5835. https://doi.org/10.1016/j.ijhydene. 2022.11.186.

15. Verkhivker, G., & Kravchenko, V. (2004). The use of chemical recuperation of heat in a power plant. Energy, 29(3) , 379¬–388. https://doi.org/10.1016/j.energy.2003.10.010

16. Svistunov, I. N. (2017). Povyshenie energeticheskoj effektivnosti plavilnyh i nagrevatelnyh ustanovok na osnove konversii prirodnogo gaza [Increasing the Energy Efficiency of Melting and Heating Plants Based on Natural Gas Conversion]. Extended abstract of candidate’s thesis. MPEI. [In Russian]

17. Polyakov, M. V., & Popov, S. K. (2023). Povyshenie effektivnosti ispol'zovaniya prirodnogo gaza v gazoturbinnyh ustanovkah posredstvom termohimicheskoj rekuperacii [Increasing the Efficiency of Natural Gas Use in Gas Turbine Plants through Thermochemical Recovery]. Promyshlennaya energetika, 2, 23–31. http://dx.doi.org/10.34831/EP.2023.44.76.004. [In Russian]

18. Olmsted, J. H., & Grimes P. G. (1972). Heat engine efficiency enhancement-through chemical recovery of waste heat. In Proc. of the Seventh Intersociety Energy Conversion Engineering Conference (pp. 241-248). ACS.

19. Tebenkov, B. P. (1975). Rekuperatory dlya promyshlennyh pechej [Heat exchangers for industrial furnaces] . Metallurgiya. [In Russian]

20. Kuznecov, N. V. et al (Eds.). (1973). Teplovoj raschet kotel'nyh agregatov [Thermal calculation of boiler units] . Energiya. [In Russian]

21. Bazhan, P. I., Kanevec, G. E., & Seliverstov, V. M. (1989). Spravochnik po teploobmennym apparatam [Handbook of heat exchangers] . Mashinostroenie. [In Russian]

22. Isachenko, V. P., Osipova, V. A., & Sukomel, A. S. (1975). Teploperedacha. Uchebnik dlya vuzov [Heat transfer. Textbook for universities] (3rd ed.). Energiya. [In Russian]

23. Garyaev, A. B., Valueva, E. P., & Maskinskaya, A. U. (2019). Raschet kozhuhotrubnyh teploobmennyh apparatov: Ucheb. posobie [Calculation of shell-and-tube heat exchangers: Tutorial] . MPEI. [In Russian]

24. Mochan, S. I. (1977). Aerodinamicheskij raschet kotelnyh ustanovok (normativnyj metod) [Aerodynamic calculation of boiler plants (normative method)] . Energiya. [In Russian]

Published

2023-06-30

How to Cite

Михаил, & Popov С. . (2023). Thermochemical heat recovery in a gas turbine plant. Energy Systems, 8(1), 72–81. Retrieved from https://j-es.ru/index.php/journal/article/view/2023-1-006

URN