Remote leak detection in thermal power pipeline systems

Authors

  • Svetlana Sazonova Voronezh State Technical University
  • Sergey Korablin Voronezh State Technical University
  • Nikolay Mozgovoy Voronezh State Technical University

Keywords:

thermal power hydraulic systems, heat supply systems, leaks, mathematical model, monitoring of the technical condition of the system, program information processing

Abstract

The features of the development of technical diagnostic methods for remote control of the parameters of the operation of thermal power pipeline systems are considered, with a main focus on heat supply systems, including leak detection, as well as in the creation of software for automated control systems. Mathematical models for remote leak detection are proposed, implemented using software for regular monitoring and maintenance to ensure reliable operation of the systems under consideration. It is shown that the creation of algorithms and a system is required to detect leaks, including determining their location and scale. The created software can be used for automated control and monitoring of a thermal power system based on the results of the study. Based on the collected data related to the parameters of the heat supply system, such as pressure, gas flow and others, it is possible to build a statistical model that may include the probability distribution, expected values and variances of the parameters. The solution to the problem of specific leak detection may vary depending on the type of heat supply and the technologies used. It is shown that the study will contribute to improving the reliability and safety of heat supply systems by providing more effective detection and control of leaks and other anomalies in the operation of pipeline systems.

Metrics

Metrics Loading ...

References

ГОСТ

1. Формирование транспортного резерва в теплоэнергетических системах / С.А. Сазонова, В.Ф. Асминин, С.Н. Кораблин, Д.А. Володкин // Информационные технологии в строительных, социальных и экономических системах. – 2022. – № 1 (27). – С. 28-34. EDN: TWCDZV

2. Михневич И.В., Рыбаков А.В., Николенко С.Д. Конструкторское решение и технология быстровозводимого сооружения для применения в зонах чрезвычайных ситуаций // Научные и образовательные проблемы гражданской защиты. – 2019. – № 1 (40). – С. 66-75. EDN: JVFDFI

3. Состояние разработок элементной базы для систем связи и управления / В.К. Зольников, А.Ю. Кулай, В.П. Крюков, С.А. Евдокимова // Моделирование систем и процессов. – 2016. – Т. 9, № 4. – С. 11-13. DOI: 10.12737/24575. EDN: XXBBUB

4. Анализ проектирования блоков RISC-процессора с учетом сбоеустойчивости / В.К. Зольников, А.С. Ягодкин, В.И. Анциферова и др. // Моделирование систем и процессов. – 2019. – Т. 12, № 4. – С. 56-65. DOI: 10.12737/2219-0767-2020-12-4-56-65. EDN: EGIHOY

5. Асминин В.Ф., Дружинина Е.В., Болучевский А.В. Обоснование конструкции облегченной панели для переносных акустических экранов // Актуальные направления научных исследований XXI века: теория и практика. – 2017. – № 1 (27). – С. 21-26. EDN: YQEROJ

6. Асминин В.Ф., Антонов А.И., Епифанов Е.Н. Использование акустических характеристик речевых пожарных оповещателей для расчёта звуковых полей помещений // Технологии техносферной безопасности. – 2014. – № 1 (53). – С. 13. EDN: TGSLIR

7. Асминин В.Ф., Корда У.Ю. Об одном из путей снижения шума в сложившейся жилой застройке, прилегающей к остановочным пунктам общественного автотpанспоpта // Безопасность жизнедеятельности. – 2011. – № 4 (124). – С. 21-24. EDN: NQYPIN

APA

1. Sazonova, S. A., Asminin, V. F., Korablin, S. N., & Volodkin, D. A. (2022). Formirovanie transportnogo rezerva v teploenergeticheskih sistemah [Formation of a transport reserve in thermal power systems]. Informacionnye tekhnologii v stroitel'nyh, social'nyh i ekonomicheskih sistemah, 1 (27) , 28-34. [In Russian]

2. Mihnevich, I. V., Rybakov, A. V., & Nikolenko, S. D. (2019). Konstruktorskoe reshenie i tekhnologiya bystrovozvodimogo sooruzheniya dlya primeneniya v zonah chrezvychajnyh situacij [Design solution and technology of a prefabricated structure for use in emergency zones]. Nauchnye i obrazovatel'nye problemy grazhdanskoj zashchity, 1 (40) , 66-75. [In Russian]

3. Zol'nikov, V. K., Kulaj, A. Yu., Kryukov, V. P., & Evdokimova, S. A. (2016). Sostoyanie razrabotok elementnoj bazy dlya sistem svyazi i upravleniya [The state of development of the element base for communication and control systems]. Modelirovanie sistem i processov, 4(9) , 11-13. https://doi.org/10.12737/24575 [In Russian]

4. Zol'nikov, V. K., Yagodkin, A. S., Anciferova, V. I., Evdokimova, S. A., Skvorcova, T. V., & YAn'kov, A .I. (2019). Analiz proektirovaniya blokov RISC-processora s uchetom sboeustojchivosti [Analysis of the design of RISC processor blocks, taking into account fault tolerance]. Modelirovanie sistem i processov, 4(12) , 56-65. https://doi.org/10.12737/2219-0767-2020-12-4-56-65

5. Asminin, V. F., Druzhinina, E. V., & Boluchevskij, A. V. (2017). Obosnovanie konstrukcii oblegchennoj paneli dlya perenosnyh akusticheskih ekranov [Justification of the lightweight panel design for portable acoustic screens]. Aktual'nye napravleniya nauchnyh issledovanij XXI veka: teoriya i praktika, 1 (27) , 21-26. [In Russian]

6. Asminin, V. F., Antonov, A. I., & Epifanov, E. N. (2014). Ispol'zovanie akusticheskih harakteristik rechevyh pozharnyh opoveshchatelej dlya raschyota zvukovyh polej pomeshchenij [The use of acoustic characteristics of speech fire alarms to calculate the sound fields of rooms]. Tekhnologii tekhnosfernoj bezopasnosti, 1 (53) , 13. [In Russian]

7. Asminin, V. F., & Korda, U. Yu. (2011). Ob odnom iz putej snizheniya shuma v slozhivshejsya zhiloj zastrojke, prilegayushchej k ostanovochnym punktam obshchestvennogo avtotpanspopta [About one of the ways to reduce noise in the existing residential development adjacent to public transport stops]. Bezopasnost' zhiznedeyatel'nosti, 4 (124) , 21-24. [In Russian]

Published

2023-12-22

How to Cite

Sazonova С., Korablin С., & Mozgovoy Н. (2023). Remote leak detection in thermal power pipeline systems. Energy Systems, 8(3), 24–30. Retrieved from https://j-es.ru/index.php/journal/article/view/2023-3-003

URN