The perspectives of electric power storage devices using in energy systems

Authors

  • Evgeny Zhilin National University of Science and Technology «MISIS»
  • Stanislav Dolgal National University of Science and Technology «MISIS»
  • Alvina Malysheva National University of Science and Technology «MISIS»

Keywords:

alternative energy, renewable energy sources, energy storage, energy efficiency improvement, power supply system, storage management system

Abstract

This paper explores the possibility of using different types of electric power storage devices in energy systems. A comparative analysis of such types of storage devices as: electrochemical, electrical, electromagnetic, mechanical. The properties of lead-acid, nickel-cadmium, sodium-sulfur, lithium-ion batteries, supercapacitors, superconducting magnets, kinetic storage devices are analyzed with the identification of advantages and disadvantages of their use; the fields of their application are considered. The possibility of integrating storage devices with renewable energy sources is being considered. The analysis of the averaged load schedules for the winter and summer periods is performed; the feasibility of using the drive to smooth out the peaks of the consumption load schedules is justified. A schematic solution for connecting an electric power storage device with a control system for a medium-voltage power supply network is proposed. The connection of the drive in such a system is provided on the 0.4 kV side using converter devices. The using of an AC-DC converter with a control system in such a system regulates the flows of active power in order to perform a two-way energy conversion in the case of energy accumulation by the storage device and energy return to the network.

Metrics

Metrics Loading ...

References

ГОСТ

1. Соснина Е.Н., Шалухо А.В., Эрдили Н.И. Повышение эффективности использования возобновляемых источников энергии в составе виртуальной электростанции на основе мультиагентного управления // Вестник Чувашского университета. – 2022. – № 3. – С. 103-113. DOI: 10.47026/1810-1909-2022-3-103-113. EDN: HDVPGG

2. Белоусов А.В., Жилин Е.В., Прасол Д.А. Разработка имитационной модели распределительной электрической сети 10 кВ для исследования возможности применения систем накопления электроэнергии с целью повышения энергоэффективности // Электрооборудование: эксплуатация и ремонт. – 2022. – № 10. – С. 45-54. EDN: UHUTFS

3. Анализ влияния возобновляемых источников энергии с силовыми преобразователями на процессы в современных энергосистемах / Н.Ю. Рубан, А.Б. Аскаров, М.В. Андреев и др. // Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. – 2020. – № 36. – С. 7-30. DOI: 10.15593/2224-9397/2020.4.01. EDN: WNUSQG

4. Добрего К.B. К вопросу создания гибридных систем накопления электроэнергии // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. – 2023. – Т.66, № 3. – С. 215-232. DOI: 10.21122/1029-7448-2023-66-3-215-232. EDN: AVOTEY

5. Булатов Ю.Н., Крюков А.В., Суслов К.В. Исследование режимов работы изолированной системы электроснабжения с управляемыми установками распределенной генерации, накопителями электроэнергии и двигательной нагрузкой // Проблемы энергетики. – 2021. – Т. 23, № 5. – С. 184-194. DOI: 10.30724/1998-9903-2021-23-5-184-194. EDN: DUEYAC

6. Eroǧlu F., Kurtoǧlu M., Vural A. M. Bidirectional DC–DC converter based multilevel battery storage systems for electric vehicle and large‐scale grid applications: A critical review considering different topologies, state‐of‐charge balancing and future trends // IET Renewable Power Generation. – 2021. – Vol. 15, Is. 4. – P. 915-938. DOI: 10.1049/rpg2.12042

7. Булатов Ю.Н., Крюков А.В., Суслов К.В. Изолированная система электроснабжения с энергетическими роутерами и возобновляемыми источниками // Вестник ИжГТУ имени М.Т. Калашникова. – 2021. – Т. 24, № 2. – С. 124-134. DOI: 10.22213/2413-1172-2021-2-124-134. EDN: VUQWJO

8. Мухаметова Л.Р., Ахметова И.Г., Стриелковски В. Инновации в области хранения энергии // Известия высших учебных заведений. Проблемы энергетики. – 2019. – Т. 21, № 4. – С. 33-40. DOI: 10.30724/1998-9903-2019-21-4-33-40. EDN: KSXNJW

9. Beeker É., Lavergne R. Le stockage de l’électricité: la solution à l’intégration des EnR intermittentes? // Annales des Mines-Responsabilité et environnement.– 2019. – Vol. 93, Is. 1. – P. 33-40. DOI: 10.3917/re1.093.0033

10. Electrochemical energy storage devices working in extreme conditions / M. Chen, Y. Zhang, G. Xing et al. // Energy & Environmental Science. – 2021. – Vol. 14, Is. 6. – P. 3323-3351. DOI: 10.1039/D1EE00271F

11. Yudhistira R., Khatiwada D., Sanchez F. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage // Journal of Cleaner Production. – 2022. – Vol. 358. – P. 13199. DOI: 10.1016/j.jclepro.2022.131999

12. A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries / He S., Wang S., Chen H. et al. // Journal of Materials Chemistry A. – 2020. – Vol 8, Is. 5. – P. 2571-2580. DOI: 10.1039/C9TA12660K

13. Yang Z., Zhu F., Lin F. Deep-reinforcement-learning-based energy management strategy for supercapacitor energy storage systems in urban rail transit // IEEE Transactions on Intelligent Transportation Systems. – 2020. – Vol. 22, Is. 2. – P. 1150-1160.

DOI: 10.1109/IESES53571.2023.10253686

14. Korkmaz S., Kariper İ. A. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications // Journal of Energy Storage. – 2020. – Vol. 27. – P. 101038. DOI: 10.1109/IESES53571.2023.10253686

15. Zimmermann A.W., Sharkh S.M. Design of a 1 MJ/100 kW high temperature superconducting magnet for energy storage // Energy Reports. – 2020. – Vol. 6. – P. 180-188. DOI: 10.1016/j.egyr.2020.03.023

16. Andriyanov S.D., Zhuravleva L.A. Electric Drive of Kinetic Energy Storage // 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). – Vladivostok: IEEE, 2020. – P. 9271185. DOI: 10.1109/FarEastCon50210.2020.9271185. EDN: FGJKCU

17. Latent thermal energy storage technologies and applications: A review / H. Jouhara, A. Żabnieńska-Góra, N. Khordehgah et al. // International Journal of Thermofluids. – 2020. – Vol. 5. – P. 100039. DOI: 10.1016/j.ijft.2020.100039

18. Юферев Л.Ю. Разработка базового источника напряжения для микросети на возобновляемых источниках энергии // Электротехнологии и электрооборудование в АПК. – 2021. – Том 68, № 1(42). – С. 39-43. DOI: 10.22314/2658-4859-2021-68-1-39-43. EDN: LEOYXT

19. Рыжова Е.Л. Повышение энергоэффективности на железнодорожном транспорте путем применения систем накопления энергии // Интеллектуальная электротехника. – 2023. – № 2(22). – С. 36-48. DOI: 10.46960/2658-6754_2023_2_36. EDN: BIOAFN

APA

1. Sosnina, E. N., Shaluho, A. V., & Jerdili, N. I. (2022). Povyshenie jeffektivnosti ispol'zovanija voz-obnovljaemyh istochnikov jenergii v sostave virtual'noj jelektrostancii na osnove mul'tiagentnogo upravlenija [Increasing the efficiency of using renewable energy sources as part of a virtual power plant based on multi-agent control]. Vestnik Chuvashskogo universiteta, 3, 103-113.

https://doi.org/10.47026/1810-1909-2022-3-103-113 [In Russian]

2. Belousov, A. V., Zhilin, E .V., & Prasol D. A. (2022). Razrabotka imitacionnoj modeli raspredeli-tel'noj jelektricheskoj seti 10 kV dlja issledovanija vozmozhnosti primenenija sistem nakoplenija jelektrojenergii s cel'ju povyshenija jenergojeffektivnosti [Development of a simulation model of a 10 kV electrical distribution network to study the possibility of using electricity storage systems to improve energy efficiency]. Jelektroobo-rudovanie: jekspluatacija i remont, 10, 45-54. [In Russian]

3. Ruban, N. Ju., Askarov, A. B., Andreev, M. V., Kievec, A. V., & Rudnik, V. E. (2020). Analiz vlijanija vozobnovljaemyh istochnikov jenergii s silovymi preobrazovateljami na processy v sovremennyh jenergosistemah [Analysis of the influence of renewable energy sources with power converters on processes in modern energy systems]. Vestnik Permskogo nacional'nogo issledovatel'skogo politehnicheskogo universiteta. Jelektrotehnika, informacionnye tehnologii, sistemy upravlenija, 36, 7-30. https://doi.org/10.15593/2224-9397/2020.4.01 [In Russian]

4. Dobrego K. B. (2023). K voprosu sozdanija gibridnyh sistem nakoplenija jelektrojenergii [On the issue of creating hybrid electricity storage systems]. Jenergetika. Izvestija vysshih uchebnyh zavedenij i jenergeticheskih ob#edinenij SNG, 66(3) , 215-232. https://doi.org/10.21122/1029-7448-2023-66-3-215-232 [In Russian]

5. Bulatov, Ju. N., Krjukov, A. V., & Suslov, K. V. (2021). Issledovanie rezhimov raboty izolirovannoj sistemy jelektrosnabzhenija s upravljaemymi ustanovkami raspredelennoj generacii, nakopiteljami jelektrojenergii i dvigatel'noj nagruzkoj [Study of operating modes of an isolated power supply system with controlled distributed generation installations, electricity storage devices and motor load]. Problemy jenergetiki, 23(5) , 184-194. https://doi.org/10.30724/1998-9903-2021-23-5-184-194 [In Russian]

6. Eroǧlu, F., Kurtoǧlu, M., & Vural, A.M. (2021). Bidirectional DC–DC converter based multilevel battery storage systems for electric vehicle and large‐scale grid applications: A critical review considering different topologies, state‐of‐charge balancing and future trends. IET Renewable Power Generation, 15(5) , 915-938. https://doi.org/10.1049/rpg2.12042

7. Bulatov, Ju. N., Krjukov, A. V., & Suslov, K. V. (2021). Izolirovannaja sistema jelektrosnabzhenija s jenergeticheskimi routerami i vozobnovljaemymi istochnikami [Isolated power supply system with energy routers and renewable sources]. Vestnik IzhGTU ime-ni M.T. Kalashnikova, 24(2) . 124-134. https://doi.org/10.22213/2413-1172-2021-2-124-134 [In Russian]

8. Muhametova L. R., Ahmetova I. G., & Strielkovski V. (2019). Innovacii v oblasti hranenija jenergii [Innovation in Energy Storage]. Izvestija vysshih uchebnyh zavedenij. Problemy jenergetiki, 21(4) , 33-40. https://doi.org/10.30724/1998-9903-2019-21-4-33-40 [In Russian]

9. Beeker, É., & Lavergne, R. (2019). Le stockage de l’électricité: la solution à l’intégration des EnR intermittentes?. Annales des Mines-Responsabilité et environnement, 93(1) , 33-40. https://doi.org/10.3917/re1.093.0033 [In French]

10. Chen, M., Zhang, Y., Xing, G., Chou, S. L., & Tang, Y. (2021). Electrochemical energy storage devices working in extreme conditions. Energy & Environmental Science, 14(6) , 3323-3351. https://doi.org/10.1039/D1EE00271F

11. Yudhistira, R., Khatiwada, D., & Sanchez, F. (2022). A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. Journal of Cleaner Production, 358, 131999.

http://doi.org/10.1016/j.jclepro.2022.131999

12. He, S., Wang, S., Chen, H., Hou, X., & Shao, Z. (2020). A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries. Journal of Materials Chemistry A, 8(5) , 2571-2580. https://doi.org/10.1039/C9TA12660K

13. Yang, Z., Zhu, F., & Lin, F. (2020). Deep-reinforcement-learning-based energy management strategy for supercapacitor energy storage systems in urban rail transit. IEEE Transactions on Intelligent Transportation Systems, 22(2) , 1150-1160. https://doi.org/10.1109/IESES53571.2023.10253686

14. Korkmaz, S., & Kariper, İ. A. (2020). Graphene and graphene oxide-based aerogels: Synthesis, characteristics and supercapacitor applications. Journal of Energy Storage, 27, 101038.

https://doi.org/10.1109/IESES53571.2023.10253686

15. Zimmermann, A. W., & Sharkh, S. M. (2020). Design of a 1 MJ/100 kW high temperature superconducting magnet for energy storage. Energy Reports, 6, 180-188. https://doi.org/10.1016/j.egyr.2020.03.023

16. Andriyanov, S. D., & Zhuravleva, L. A. (2020, October). Electric Drive of Kinetic Energy Storage. In 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) (pp. 1-4). IEEE. https://doi.org/10.1109/FarEastCon50210.2020.9271185

17. Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Ahmad, D., & Lipinski, T. (2020). Latent thermal energy storage technologies and applications: A review. International Journal of Thermofluids, 5, 100039. https://doi.org/10.1016/j.ijft.2020.100039

18. Juferev L.Ju. (2021). Razrabotka bazovogo istochnika naprjazhenija dlja mikroseti na vozobnov-ljaemyh istochnikah jenergii [Development of a basic voltage source for a microgrid using renewable energy sources]. Jelektrotehnologii i jelektrooborudovanie v APK, 68(1) . 39-43. https://doi.org/10.22314/2658-4859-2021-68-1-39-43 [In Russian]

19. Ryzhova E.L. (2023). Povyshenie jenergojeffektivnosti na zheleznodorozhnom transporte putem primenenija sistem nakoplenija jenergii [Increasing energy efficiency in railway transport through the use of energy storage systems]. Intellektual'naja jelektrotehnika, 2(22) . 36-48. https://doi.org/10.46960/2658-6754_2023_2_36 [In Russian]

Published

2023-12-22

How to Cite

Zhilin Е., Dolgal С., & Malysheva А. (2023). The perspectives of electric power storage devices using in energy systems. Energy Systems, 8(3), 32–41. Retrieved from https://j-es.ru/index.php/journal/article/view/2023-3-004

URN