TEWI, LCCP and LCC metrics for comparing the refrigeration systems

Authors

  • Viktoriia Karnaukh Donetsk National University of Economics and Trade named after Mikhail Tugan-Baranovsky
  • Boris Bayda Donetsk National University of Economics and Trade named after Mikhail Tugan-Baranovsky
  • Alexey Priymak Donetsk National University of Economics and Trade named after Mikhail Tugan-Baranovsky

Keywords:

energy conversion system, refrigeration, heat pump, LCCP, TEWI, LCC

Abstract

The paper considers environmental metrics that assess the man-made impact of energy-converting refrigeration systems on the environment. The results of a comparative analysis of TEWI and LCCP obtained for a medium-temperature vapor-compression heat pump unit (VСHP) operating on refrigerants R1234ze, R1336mzz (E), R600a and R744 are presented. R1336mzz (E) has the worst environmental indicators, because the total emission of equivalent CO2 for the entire period of the life cycle exceeds the same indicator for R600a by 4.2 times. The LCCP results show that system performance and equipment manufacturing emissions are the dominant drivers of CO2 emissions over the life of the SHP unit. The results of comparing refrigerants based on TEWI and LCCP are directly proportional and depend on the amount of energy consumed by the VСHP, which is also reflected in the energy efficiency indicators of the system. It is advisable to take into account the TEWI, LCCP and LCC criteria when comparing and selecting energy-converting refrigeration systems using the multi-criteria optimization method, which will help the user get a more informative understanding of the VСHP.

Metrics

Metrics Loading ...

References

ГОСТ

1. Гармонизация методологии определения влияния на климат на протяжении жизненного цикла оборудования (LCCP). 32я информационная записка по холодильным технологиям (октябрь 2016 г.) // Холодильная техника. – 2016. – № 12. – С. 6-11. EDN: YJYLDN (перевод инф. записки: https://iifiir.org/en/fridoc/harmonization-of-life-cycle-climate-performance-methodology-139940)

2. Карнаух В.В. Особенности расчета и прогнозирования работы теплонасосных установок на хладагентах четвертого поколения // Журнал Сибирского федерального университета. Серия: Техника и технологии. – 2022. – Т. 15, № 2. – С. 202-215. DOI 10.17516/1999-494X-0383. EDN: DROFQE

3. ISO 817:2014. Refrigerants. Designation and safety classification. – Geneva: ISO, 2016. – 73 p.

4. Maykot R., Weber G.C., Maciel R.A. Using the TEWI methodology to evaluate alternative refrigeration technologies // International Refrigeration and Air Conditioning Conference. – West Lafayette (USA): Purdue University, 2004. – P. 709.

URL: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1708&context=iracc.

5. Р ИСО 14040-2010. Экологический менеджмент. Оценка жизненного цикла. Принципы и структура. – М.: Стандартинформ, 2010. – 19 с.

6. ГОСТ Р 27.202-2012 Надежность в технике. Управление надежностью. Стоимость жизненного цикла. – М.: Стандартинформ, 2014 – 16 с.

7. Бром А.Е., Белова О.В., Сиссиньо А. Базовая модель стоимости жизненного цикла энергетического оборудования // Гуманитарный Вестник. – 2013. – № 10(13). – С. 115. DOI: 10.18698/2306-8477-2013-10-115. EDN: RGTWOV

8. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems / 2nd Ed. – Parsippany (USA): Hudraulic Institute, 2021. – 212 p.

APA

1. IIR, & Hwang, Y. (October 2016) Harmonization of Life Cycle Climate Performance Methodology: 32 nd Informatory Note on Refrigeration Technologies. International Institute of Refrigeration (IRR). https://iifiir.org/en/fridoc/harmonization-of-life-cycle-climate-performance-methodology-139940

2. Karnaukh, V.V. (2022). Specifics of calculation and prediction of the operation of heat pumps working on fourth generation refrigerants. Journal of Siberian Federal University. Engineering and technologies, 2 (15) , 202-215. https://doi.org/ 10.17516/1999-494X-0383 [In Russian]

3. ISO (2016). 817:2014. Refrigerants. Designation and safety classification. International Organization for Standardization.

4. Maykot, R., Weber, G. C. & Maciel, R. A. (2004). Using the TEWI methodology to evaluate alternative refrigeration technologies. In Proc. International Refrigeration and Air Conditioning Conf. (paper 709). Purdue University. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1708&context=iracc

5. Rosstandart (2010). R ISO 14040-2010 Ekologicheskij menedzhment. Ocenka zhiznennogo cikla. Principy i struktura [State Standard R ISO 14040-2010 Environmental management. Life cycle assessment. Principles and framework] . Standartinform [In Russian]

6. Rosstandart (2012). GOST Р 27.202-2012 Nadezhnost' v tekhnike. Upravlenie nadezhnost'yu. Stoimost' zhiznennogo cikla. [Dependability in technique. Dependability management. Life cycle costing] . Standartinform [In Russian]

7. Brom, A. E., Belova, O. V. & Sissinyo, A. (2013). Basic model of life cycle costing of the power equipment. Humanities bulletin of BMSTU, 2, 115. https://doi.org/10.18698/2306-8477-2013-10-115 [In Russian]

8. HI. (2021). Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems (2nd ed.). Hudraulik Institute

Published

2023-12-22

How to Cite

Karnaukh В., Bayda Б., & Priymak А. (2023). TEWI, LCCP and LCC metrics for comparing the refrigeration systems . Energy Systems, 8(3), 58–63. Retrieved from https://j-es.ru/index.php/journal/article/view/2023-3-007

URN