Numerical simulation of heat transfer intensification options in the channels of a thermoelectric generator plant

Authors

  • Denis Bazykin Voronezh State Technical University
  • Vitaliy Ilyichev Voronezh State Technical University
  • Evgeniy Orekhov Financial & Industrial Company KOSMOS-NEFT-GAS
  • Aleksander Barakov Voronezh State Technical University

Keywords:

heat transfer intensification, rectangular profiled channels, thermoelectric generator modules, vortex tube, compressed air, natural gas, transverse baffles, flow, power supply

Abstract

This article discusses some options for improving the efficiency of an experimental thermoelectric generator set designed to study, design and create power plants of this type, during direct operation of which there are no fuel combustion processes intended for power supply to industrial consumers located at a considerable distance from the centralized power supply, and namely, objects of production, distribution and transportation of natural gas, a schematic diagram of the mentioned power plant is shown, the principle of operation and the main advantages of its application are described. Improving the efficiency of the installation in the present study consists in intensifying heat transfer in profiled channels of rectangular cross section, through which flows of gaseous coolant with different temperatures are supplied. Several variants of the possible heat transfer intensification are shown, which consist in the implementation of intensifiers inside the channels in the form of transverse solid partitions, alternately changing the direction of the coolant movement. In the presented study, numerical simulation of several variants of heat transfer intensification with different geometric dimensions of the flow section of profiled channels and transverse baffles installed in these channels was carried out. In conclusion, the results of the numerical simulation are shown, the effectiveness of the methods used is evaluated, of which the most optimal one is selected.

Metrics

Metrics Loading ...

References

ГОСТ

1. Краснова Н.П., Шеин В.М. Децентрализованное теплоэнергоснабжение в России, проблемы и перспективы развития // Успехи современной науки. 2018. № 1. С. 40-43. EDN: YUZUZG

2. Тищенко Н.И. Использование альтернативных источников энергии в энер-госнабжении Крайнего Севера // Аллея науки. 2017. Том 2, № 16. С. 40-42. EDN: YNNWXY

3. Лемминг А.Э., Шостаковский П.Г. Решение задач энергетического обеспе-чения автономных объектов на основе термоэлектрических модулей // Инновации. 2018. № 5. С. 9-13.

EDN: YAHMIH

4. Люкайтис В.Ю., Глушков С.Ю. Автономные энергокомплексы, гибридные конструкции с применением возобновляемых источников энергии // Силовое и энерге-тическое оборудование. Автономные системы. 2019. Том 2, № 2. С. 111-120.

EDN: CVPCON. DOI: 10.32464/2618-8716-2019-2-2-111-120

5. Zornek T., Monz T., Aigner M. Performance analysis of the micro gas turbine Tur-bec T100 with a new FLOX-combustion system for low calorific fuels // Applied Energy. 2015. Vol. 159. P. 276-284. DOI: 10.1016/j.apenergy.2015.08.075

6. Alford A., Nichol P., Frisby B. The Development of a Small High-Speed Steam Mi-croturbine Generator System // IOP Conference Series: Materials Science and Engineering. 2015. Vol. 90. P. 012067.

DOI: 10.1088/1757-899X/90/1/012067

7. Termoelectric generator on Satellites – An Approach for Waste Heat recovery in Space / M. Von Lukowicz, E. Abbe, T. Schmiel, M. Tajmar // Energies. 2016. No 9 (7). P. 1-14.

DOI: 10.3390/en9070541

8. Создание экспериментальной электрогенерирующей установки с применением вихревого эффекта Ранка-Хилша / Д.А. Базыкин, В.А. Ильичев, В.В. Курасов, А.В. Бараков // Физико-технические проблемы энергетики, экологии и энергоресурсосбере-жения: Тр. 24-й научно-техн. конф. Воронеж: Воронежский государственный техниче-ский университет, 2022. С. 3-10. EDN: IPNLOZ

9. Белоусов А.М, Исрафилов И.Х., Харчук С.И. Исследование возможностей по-вышения энергоэффективности вихревой трубы Ранка – Хилша // Известия Тульского государственного университета. Технические науки. 2015. № 7-2. С. 112-121. EDN: VCQCHB

10. Эксплуатация регулируемых вихревых труб Ранка-Хилша в экологически значи-мых промышленных установках очистки газов (аналитический обзор) / В.А. Девисилов, Д.А. Жидков, В.С. Спиридонов, О.В. Кирикова // Экология и промышленность России. 2013. № 12. С. 14-19. EDN: RNLOUT

APA

1. Krasnova, N. P., & Shein, V. M. (2018). Detsentralizovannoye teploenergosnabzheniye v Rossii, problemy i perspektivy razvitiya [Decentralized heat and power supply in Russia, prob-lems and development prospects]. Uspekhi sovremennoy nauki, 1, 40-43. [In Russian]

2. Tishchenko, N. I. (2017). Ispol'zovaniye al'ternativnykh istochnikov energii v energosnab-zhenii Kraynego Severa [Use of alternative energy sources in the energy supply of the Far North]. Alleya nauki, 2, 16, 40-42. [In Russian]

3. Lemming, A. E., & Shostakovskiy, P. G. (2018). Resheniye zadach energeticheskogo obespecheniya avtonom-nykh ob"yektov na osnove termoelektricheskikh moduley [Solving the problems of energy supply of autonomous objects based on thermoelectric modules]. Innovatsii, 5, 9-13. [In Russian]

4. Lyukaytis, V. Yu., & Glushkov, S. Yu. (2019). Avtonomnyye energokompleksy, gibridnyye konstruktsii s primeneniyem vozobnovlyayemykh istochnikov energii [Autonomous energy complexes, hybrid structures using renewable energy sources]. Silovoye i energeticheskoye oborudovaniye. Avtonomnyye sistemy, 2 (2) , 111-120. https://doi.org/10.32464/2618-8716-2019-2-2-111-120 [In Russian]

5. Zornek, T., Monz, T., & Aigner, M. (2015). Performance analysis of the micro gas turbine Turbec T100 with a new FLOX-combustion system for low calorific fuels. Applied Energy, 159, 276-284. https://doi.org/10.1016/j.apenergy.2015.08.075

6. Alford, A., Nichol, P., & Frisby, B. (2015). The Development of a Small High-Speed Steam Mi-croturbine Generator System // IOP Conference Series: Materials Science and Engineering, 90, 012067. http://dx.doi.org/10.1088/1757-899X/90/1/012067

7. Von Lukowicz, M., Abbe, E., Schmiel, T., & Tajmar, M. (2016). Termoelectric generator on Satellites – An Approach for Waste Heat recovery in Space. Energies, 9 (7) , 1-14. http://dx.doi.org/10.3390/en9070541

8. Bazykin, D. A., Il'ichev, V. A., & Barakov, A. V. (2022). Sozdaniye eksperimental'noy elektro-generiruyushchey ustanovki s primeneniyem vikhrevogo effekta Ranka-Khilsha [Creation of an experimental power generating plant using the Ranque-Hilsch vortex effect]. In Physical and technical problems of energy, ecology and energy saving. Voronezh State Technical Univer-sity. [In Russian]

9. Belousov, A. M, Israfilov, I. Kh., & Kharchuk, S. I. (2015). Issledovaniye vozmozhnostey pov-ysheniya energoeffektivnosti vikhrevoy truby Ranka – Khilsha [Study of the possibilities of im-proving the energy efficiency of the Rank-Hilsch vortex tube]. Izvestiya Tul'skogo gosudar-stvennogo universiteta. Tekhnicheskiye nauki, 7-2, 112-121. [In Russian]

10. Devisilov, V. A., Zhidkov, D. A., Spiridonov, V. S., & Kirikova, O. V. (2013). Ekspluatatsiya reguliruyemykh vikhrevykh trub Ranka-Khilsha v ekologicheski znachimykh promyshlennykh ustanovkakh ochistki gazov (analiticheskiy obzor) [Operation of Ranque-Hilsch Adjustable Vor-tex Tubes in Environmentally Significant Industrial Gas Treatment Plants (Analytical Review)]. Ekologiya i promyshlennost' Rossii, 12, 14-19. [In Russian]

Published

2022-12-20

How to Cite

Bazykin Д., Ilyichev В., Orekhov Е., & Barakov А. (2022). Numerical simulation of heat transfer intensification options in the channels of a thermoelectric generator plant. Energy Systems, 7(3), 8–16. Retrieved from https://j-es.ru/index.php/journal/article/view/2022-3-001

URN